Reg. No. :

Question Paper Code: 52004

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024

Second Semester

Electrical and Electronics Engineering

15UPH204 – SOLID STATE PHYSICS

(Common to Biomedical Engineering)

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

1.	The electrical conductivity of a conductor may be increased by		
	(a) Increasing its temperature	(b) decreasing its temperature	
	(c) Increasing its vibrations	(d) Decreasing its mobility	
2.	In classical free electron theory, electron obeying under the equilibrium con	s constitute electron gas, ndition.	CO1 -R
	(a)Maxwell–Boltzmann statistics	(b) Bose Einsteins statistics	
	(c) Fermi Dirac statistics	(d) Zone theory	
3.	Conductivity of a semiconductor increases with		CO2 -R
	(a) increase in temperature	(b) decrease in temperature	
	(c) constant temperature	(d) increase in band gap	
4.	At O K, a semiconductor acts		CO2- R
	(a) as a superconductor	(b) a good conductor	
	(c) as an insulator	(d) same as semiconductor	
5.	Water is a substance.		CO3 -R
	(a) paramagnetic	(b) ferromagnetic	
	(c) diamagnetic	(d) anti ferro magnetic	

6.	5. The structure of High temperature superconductor is			ductor is	CO3 -R	
	(a) c	cubic	(b) FCC	(c) BCC	(d) pervos	kite
7.	Ioni	c polarization				CO4- R
	(a) o	decreases with incr	ease in temperature			
	(b) i	(b) is independent of temperature				
	(c) increases with temperature					
	(d) first increases and then decreases with temperature					
8.	Permittivity of free space is					CO4 -R
	(a) 8	8.854 x 10 ⁻¹² F/m		(b) 7.854 x 10 ⁻¹² F/m		
	(c) 9	9 x 10 ⁹ F/m		(d) 6.625 x 10 ⁻²⁴ F/m		
9. The versatility of nanotechnolo			technology is due to			CO5 R
	(a) l	ow density ratio		(b) high surface to volume	ratio	
	(c) l	ow surface to volu	me ratio	(d) high density ratio		
10.	The approach used to construct nano materials by merging smaller components into more complex assemblies is			CO5 -R		
	(a) [Fop-down approac	h	(b) Bottom-up approach		
	(c) ł	oottom-bottom app	oroach	(d) Top-top approach.		
			PART – B (5 x	2= 10Marks)		
11.	Mention any two postulates of classical free electron theory			CO1 -R		
12.	Distinguish between elemental and compound semiconductors.		CO2- R			
13.	Write note on High Temperature Super Conductors (HTSC).			CO3- R		
14.	Mention any two properties of ceramics.			CO4- R		
15.	Mer	ntion the applicatio	ons of nano materials i	n electronics.		CO5- R
PART – C (5 x 16= 80Marks)						
16.	(a)	On the basis of fr thermal and elect	ree electron theory der rical Conductivity an Or	ive an expression for the d Explain Lorentz number	CO1 -App	(16)
	(b)	(i) Define density concentration in r states.	v of energy states in m metals by deriving an	etals. Calculate carrier expression for density of	CO1 -App	(10)
		(ii) Obtain an exp concentration in 1	pression for Fermi ene metals.	rgy in terms of carrier	CO1 -U	(6)

17.	(a)	(i) What is Hall effect? Obtain the expression for Hall coefficient in terms of current density and electronic charge.	CO2 -App	(8)
		(ii) Hall coefficient of certain silicon specimen was found to be $-7.35 \times 10^{-5} \text{ m}^3\text{C}^{-1}$. Determine the nature of the semiconductor, if the conductivity was 200 $\Omega^{-1}\text{m}^{-1}$. Calculate the density and mobility of the charge carriers	CO2 -App	(8)
	(b)	Explain with neat sketch the P-type extrinsic	CO2 -Ana	(16)
		semiconductor. Derive an expression for concentration of carrier in an extrinsic Semiconductor		
18.	(a)	Explain domain theory of ferromagnetism. Or	CO3 -Ana	(16)
(b)		Show that superconductors are perfect diamagnet. Differentiate type I and type II superconductor. Why do we prefer Type II superconductors for making permanent magnets?	CO3 -Ana	(16)
19.	(a)	(i) What is meant by internal field in dielectrics? Obtain an expression for internal field experienced by an atom in a cubic structure using Lorentz method.	CO4 -U	(8)
		(ii) Assume ε_r as dielectric constant of the material and α_e as electronic polarisability, deduce Clausius Mosotti relation using the expression obtained above for internal field. Or	CO4- U	(8)
	(b)	Explain the various methods of processing in ceramics	CO4 -Ana	(16)
20.	(a)	Discuss the techniques of synthesis of Nano materials using Ball milling and Chemical Vapour Deposition method Or	CO5- U	(16)
	(b)	(i) Explain the variation of nano material's property with its geometry	CO5 -U	(12)
		(ii) Mention the applications of nanomaterials.	CO5 -U	(4)