Reg. No.:						
			_			

Question Paper Code:94B02

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth Semester

Biomedical Engineering

19UBM402 - ANALOG AND DIGITAL INTEGRATED CIRCUITS

(Regulations 2019)

Duration: Three hours Maximum:100Marks

Answer ALL Questions

PARTA-(10 x2=20Marks)

1.	Define slew rate. What causes the slew rate?	CO1-U
2.	Design an amplifier with a gain of -10 and input resistance of 10 k Ω .	CO2-Ap
3.	Enumerate the advantages of active filters over the passive filters?	CO3-An
4.	Which is the fastest ADC? State the reason.	CO1-U
5.	Define lock range and capture range of PLL.	CO1-U
6.	Mention the need for voltage regulator.	CO1-U
7.	What are called don't care conditions?	CO1-U
8.	Distinguish between demultiplexer and decoder.	CO3-An
9.	How can a D flip-flop be converted into T flip-flop?	CO1-U
10.	What are the advantages of Programmable Logic Devices?	CO1-U

PART-B(5X 16= 80Marks)

- 11. (a) (i) Why R_{comp} is used in all opamp circuits? Explain the effect CO1-U (8) of R_{comp} in the circuit?
 - (ii) Enlighten in detail about an Instrument which has high CO3-Ana (8) CMRR, Gain and low output impedance.

(b) (i) Briefly explain the function of a Sample and Hold circuit using CO1-U (8) op-amp. (ii) Differentiate the performance of inverting and non-inverting CO3-Ana (8) operational amplifier configurations. Explain how a comparator can be used as a phase detector. CO1-U (8) 12. (a) (i) (ii) Design an op-amp circuit which converts irregularly shaped CO3-Ana (8) waveform to regular shaped waveform. Derive the transfer function of First order High Pass Filter (b) (i) CO1-U (8) and plot its frequency response. (ii) What are the limitations in weighted resistor type D/A CO3-An (8) converters and explain how this problem can be solved in R-2R ladder type D/A converters. 13. (a) Design an IC 555 in Monostable mode and obtain the timing(T) CO1-U (16)information. Also, suggest a method to avoid triggering during positive pulses. Or (b) What is IC 723 regulator? Design a Low Voltage regulator and CO1-U (16)High Voltage regulator using IC 723. 14. (a) (i) Obtain the minimal SOP and POS expression of the CO2-Ap (12)function $F = \sum_{m} (0.3, 4.5, 7.8, 13, 15) using K-map.$ Implement the following function using suitable (ii) CO2-Ap **(4)** multiplexer. $F(a,b,c) = \sum m(3,7,4,5)$. Implement the following function using suitable multiplexer. $F(a,b,c) = \sum m(3,7,4,5)$. Implement the following function using suitable multiplexer. $F(a,b,c) = \sum m(3,7,4,5)$. Implement the given function using multiplexer. $F(x, y, z) = \sum (0, 2, 6, 7)$ Implement the following Boolean function using 8:1

(7)
BTL 1
Remember
9.
Mux: F(A,B,C,D)=∑m(0,1,3,4,8,9,15)
Or

- (b) Minimize the given the boolean function using Quine CO2-Ap (16) McCluskey method F (A,B,C,D,E) = \sum (0,2,4,6,9,13,21,23,25,29,31).
- 15. (a) Design a 4 bit synchronous counter using JK flip-flop. CO2-App (16)
 Or
 - (b) (i) Realize 'T' Flip Flop using SR Flip Flop & JK Flip Flop. CO2-App (8)
 - (ii) Design the following expression F=AB+BC+CA using CO2-App (8) PLA.