Reg. No. :									
------------	--	--	--	--	--	--	--	--	--

Question Paper Code: U5B03

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024

Fifth Semester

Biomedical Engineering

21UBM503-VIRTUAL BIO INSTRUMENTATION

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. State the role of the graphical user interface (GUI) in Virtual Instruments? CO1-U
- 2. Define a Virtual Instrument (VI), and why is it needed in the field of CO1-U measurement and testing?
- 3. Define debugging in LabVIEW. CO1-U
- 4. Design a simple block diagram for a Virtual Instrument to perform CO2-App temperature monitoring.
- 5. Give the primary advantage of using a state machine design pattern in CO1-U LabVIEW applications.
- 6. Demonstrate the concept of auto-indexing in LabVIEW arrays. CO1-U
- 7. Describe the steps involved in initializing a DAQ assistant in LabVIEW. CO1-U
- 8. Define the term "Data Acquisition" and briefly explain its significance in CO1-U the field of measurement and control.
- 9. Sketch the block diagram of DAQ in LabVIEW. CO1-U
- 10. Analyze the signals that will be acquired in a VI in a patient monitoring CO3-Ana system.

$$PART - B (5 \times 16 = 80 \text{ Marks})$$

(a) Analyze the different components of a virtual instrument block CO1-U (16) diagram, explain their functions and also compare it with traditional instruments.

- (b) Compare and contrast the advantages and disadvantages of CO1-U (16) using virtual instruments.
- 12. (a) Explain the purpose and functionality of the Front Panel and CO1-U (16) Block Diagram in LabVIEW. Describe its components and palettes used in them. Describe how a VI is generated and RUN in LabVIEW.

Or

- (b) Discuss the role of the icon and connector panels in LabVIEW CO1-U (16) programming, and explain how they facilitate data transfer between VIs.Explain the concept of data types in LabVIEW programming, and provide examples of different data types and their uses.
- 13. (a) Evaluate the importance of error handling in LabVIEW CO3-Ana (16) applications and discuss how error clusters enhance robustness and reliability. Develop a LabVIEW VI that includes error clusters to handle various potential errors in a data acquisition system. Explain how your error handling strategy contributes to the overall reliability of the system.

Or

- (b) Analyze the differences between case structures and the CO3-Ana (16) formula node in LabVIEW. Discuss scenarios where each element is more suitable for implementing specific logic or calculations. Develop a LabVIEW VI that incorporates both case structures and the formula node to solve a complex medical problem.
- 14. (a) Explain the concept of a Task in NI-DAQmx and its CO1-U (16) significance in LabVIEW. Discuss the steps involved in creating and configuring a Task in LabVIEW for data acquisition. Provide an example illustrating the use of Task in a LabVIEW program.

Or

(b) Describe the concepts involved in DAQ hardware and DAQ CO1-U (16) software. Describe how they are involved in acquiring real time data from the sensors. Give examples related to Biomedical Engineering.

15. (a) Design a LabVIEW VI for real-time temperature monitoring CO3-Ana (16) using a thermocouple sensor and DAQ Assistant. Discuss the selection of hardware components, sensor calibration, and the implementation of error handling in your VI. Explain how your VI ensures accurate temperature measurements.

Or

(b) Discuss the principles of human-machine interaction and user CO3-Ana (16) interface design for assistive device control VIs. Explain how LabVIEW can be used to create user-friendly interfaces for individuals with disabilities. Provide an example VI with an accessible user interface.

U5B03