	Α	Reg. No. :												
		Question	Pape	er C	ode	: U	302	9						
	B.E.	/B.Tech. DEGREE	EXAN	ЛINA	ATIO	N, A	APRI	L 20	24					
		Thi	rd Sen	nester	r									
		Artificial Intellige	nce an	d Ma	achin	e lea	arnin	g						
	21UMA329 COM	IPUTATIONAL ST	TATIS	TICS	AN	D N	UMI	ERIC	AL]	MET	THO	DS		
		(Regu	ilation	s 202	21)									
Dura	ation: Three hours								M	laxin	num	: 100	Mar	ks
		Answe	r All Ç	Juest	ions									
		PART A - ((10 x 1	= 10) Ma	rks)								
1.	For a set of five bivaria	nte data(x, y) covaria arl Pearson coefficie	ance is ent of	s 10. corre	Varia latio	ance n is	of x	and	y are	e 25 a	and		CO	6- U
	(a) 1	(b) -1		(c) $\frac{1}{2}$					d)	$\frac{1}{4}$				
2.	The Regression coeffic	eient y on x is		2						4			CO	6- U
	(a) $\gamma \frac{\sigma_x}{\sigma_y}$	(b) $\gamma \frac{\sigma_y}{\sigma_x}$	(0	c) $\frac{\sigma_x}{\sigma_y}$	-				(d	$\frac{\sigma_x}{\gamma\sigma_x}$: y			
3.	t-test is used to test for	equality of											CO	6- U
	(a) Mean	(b) Variance	(0	c) rati	0				(d)	all t	he al	oove		
4.	Choose the F-test												CO	6- U
	(a) $F = S_1^2 / S_2^2$, $S_1 > S_2$	(b) $F = S_2^2 / S_1^2$, S	$S_1 > S_2$	(c) F =	= 0			(d)	Nor	ne of	the a	above	9
5.	number of not curve in method of lea	rmal equations are st squares	requi	red to	o fit	a j	parat	olic					CO	6- U
	(a) 1	(b) 2	(0	:) 3					(d)	4				
6.	In method of moments	,the second momen	t is de	notec	l by								CO	6- U
	(a) $\Delta y \Sigma x y^2$	(b) $\Delta x \Sigma xy$		(c) 4	Δx Σ	x ² y			(0	d) Δy	γΣxy	y^2		
7.	prior values are method	e required to predi	ct the	next	t val	ue ii	n Mi	lne's	5				CO	6- U
	(a) 1 (b)) 2	(0	:) 3					(d)4				

8.	The Fourth order Run solution to differentia	nge-Kutta methods ar l equations	e used widely in		CO6- U
	(a) abstract	(b) graphical	(c) numerical	(d) None of	these
9.	PDE of second order,	if B^2 -4AC> 0 then			CO6- U
	(a) parabolic	(b) elliptic	(c) hyperbolic	(d) None of	these
10	$u_{xx}+u_{yy}=f(x,y)$ is a	equation			CO6- U
	(a) elliptic	(b) parabolic	(c) hyperbolic	(d) Non homogene	eous
		PART – B	(5 x 2= 10 Marks)		
11.	The two variable x an Find Mean values of x	d y have the Regress and y Find Mean val	sion lines $6x + y - 31 =$ ues of x and y	0 & 3x + 2y - 26 = 0	CO1- App
12.	What are the parameter	s and statistics in sam	npling?		CO6-U
13.	Distinguish between po	oint and interval estim	ate.		CO6- U
14.	Using Taylor's series n	nethod find $y(0.1)$ gi	ven $y' = 1 + y$ with y	(0) = 1	CO4 -App
15.	Classify $u_{xx} - 2u_{xy} + i$	$\iota_{yy} = 0$			CO5 -App
		PART – O	C (5 x 16= 80 Marks)		

16. (a) (i) Calculate the coefficient of correlation of the following data CO1- App (8)

Х	100	200	300	400	500	600	700	
Y	30	50	60	80	100	110	130	

(ii) Calculate the Correlation coefficient between X and Y from following CO1- App (8) table

Y	18	19	20	21
200-250	4	4	2	1
250-300	3	5	4	2
300-350	2	6	8	5
350-400	1	4	6	10
		Or		

(b) (i) Calculate the rank correlation coefficient of the following data

Х	68	64	75	50	64	80	75	40	55	64
Y	62	58	62	45	81	60	68	48	50	70

(ii) Calculate the Regression equation between the marks in X and Y CO1- App (8)

Х	12	15	17	18	23	16	25	29
Y	110	120	124	130	136	122	140	143

17. (a) (i) The following data are collected on two characters. Using chi-square CO2- Ana (8) test to find is there any relation between smoking and Non Smokers

	Smokers	Non Smokers
Literates	460	140
Illiterates	240	160

(ii) The theory predicts the population of beans in the four groups A, B, C CO2- Ana (8) and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?

Or

(b) (i) Two researchers A and B adopted different techniques while rating the CO2- Ana (8) students level. Can you say that the techniques adopted by them are significant?

Researchers	Below	Average	Above	Geniu	Total
	Average		Average	S	
А	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

(ii) To verify whether a course in accounting improved performance, a CO2- Ana (8) similar test was given to 12 participants both before and after the course.The marks are: Was the course was useful?

Before	44	40	61	52	32	44	70	41	67	72	53	72
After	53	38	69	57	46	39	73	48	73	74	60	78

18. (a) (i) Applying least square method techniques fit a straight line y = ax + b CO3- App

Х	5	10	15	20	25
Y	16	19	23	26	30

(ii) Applying method of moments fit a straight line y = ax + b

Х	2	4	6	8	10	12	14
Y	20.3	18.5	17	14.8	13	11.2	9.4
			C)r			

(b) (i) Fit a straight line fit of the form y = a + bx

Х	0	5	10	15	20	25
Y	12	15	17	22	24	30

(ii) By Applying group average method, obtain a second degree curve CO3- App (8) which fits best in the following data

Х	87.5	84.0	77.8	63.7	46.7	36.9
Y	292	283	270	235	197	181

19. (a) Given
$$\frac{dy}{dx} = 1 + y^2$$
, $y(0) = 0$, $y(0.2) = 0.2027$, $y(0.4) = 0.4228$, CO4- App (16)
 $y(0.6) = 0.6841$ evaluate $y(0.8)$ by Adams – Bash forth method.

Or

(b) (i) Using R-K method of fourth order, find y(0.1) for the initial value CO4- App (8) problem $\frac{dy}{dx} = x + y^2$ with y(0) = 1

(ii) Using Taylor's series method find y(1.1) given y' = x + y with CO4-App (8) h=0.1 & y(1) = 0

(8)

CO3- App (8)

CO3- App (8)

20. (a) (i) Solve
$$\frac{\partial^2 u}{\partial x^2} = 32 \frac{\partial u}{\partial t}$$
, $u(0,t) = 0$, $u(1,t) = t$, $u(x,0) = 0$. Take (8)

h = 0.25 and find the values of u up to t = 5 using Bender-Schmidt's difference equation.

(ii) Using Crank-Nicholson's difference equation to solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ (8) u(0,t) = 0, u(1,t) = t, u(x,0) = 0. compute u for one time step function with h=0.25.

Or

(b) Solve the Laplace equation $u_{xx} + u_{yy} = 0$ at the nine mesh points of the CO5- App (16) square given below. The values of u at the boundary are specified in the figure

0	11.1	17	19.7	18.6
0	<i>u</i> ₁	u ₂	u 3	21.9
0	u 4	u 5	u ₆	21.0
0	u 7	u 8	u ₉	17.0
0	8.7	12.1	12.8	9.0

U3029

U3029

U3029