A		Reg. No. :										
		Question Pape	er Code: R2M11									
B.E./B.Tech. DEGREE EXAMINATION, MAY 2024												
Second Semester												
Artificial Intelligence and Machine Learning												
R21UMA211-FOURIER SERIES, PARTIAL DIFFERENTIAL EQUATIONS AND												
COMPLEX ANALYSIS												
(Regulations R2021)												
Dura	Duration: Three hours Maximum: 10											
Answer ALL Questions												
		PART A - (10 x	1 = 10 Marks)									
1.	The term $(a_1 \cos x + b_1 \sin x)$ in Fourier series is called											
	(a) First harmonic (b)Second harmonic (c)Third harmonic (d) Fourier Coefficient											
2.	The Fourier constant		CO1-App									
	(a) x^2	(b)3x	(c)0	(d) 1								
3.	The elimination of one arbitrary function will result in a PDE of order CO2-A											
	(a) first	(b) second	c) third	d) fourth								
4.	The complete solution of $z = px + qy + pq$ is											
	(a) $z = ax + by + ab$	(b) z = ax - by - ab	(c) $z = ax + by - ab$	(d) $z = ax$	-by + ab							
5.	An insulated rod of l	ength 60 cm has its er	nds at A and B kept a	at	CO3-App							
20°C and 80°C respectively, then its steady state solution is												
	(a) x-20	(b)4x+20	(c) x+20	(d) x+60	1							
6.	$2u_{xx} + 3u_{x}u_{y} + u_{yy} = x$ is a type of											
	(a) Hyperbolic	(b) Parabolic	(c) elliptic	(d) cyclic	;							

7.	The fund	CO6- U											
	(a) 2		(b) -2		c) 2	2i		(d) ±2i					
8.	The map	pping $w = z^2$ is r		С	06- U								
	(a) 0		(b) -1		(c)	1		(d) 2					
9.	The valu	the of $\int_{\mathbf{C}} \frac{dz}{z+2}$, c:	CO6- U										
	(a) 2πi		(b) -2πi		(c)	4πi		(d) 0					
10.	The resid	due of $f(z) = \frac{1}{z^3}$		CO5- App									
	(a) $\frac{4}{7}$		(b) $\frac{1}{2}$		(c)	$\frac{1}{7}$		(d) $\frac{3}{4}$					
	PART - B (5 x 2= 10 Marks)												
11.	Find a_0 and a_n in the Fourier series of $f(x) = x$ in $(0, 2\pi)$							CO1- App					
12.	Solve $\sqrt{p} + \sqrt{q} = 1$							CO2- App					
13.	The ends A and B of a rod of length 10cm long have their temperature kept at 20° c & 70° c. Find the steady state temperature distribution on the rod.							CO3-App					
14.	Show th	CO4- App											
15.	Evaluate $\int_{c} \frac{e^{-z}}{z+1} dz$ where C is $ z = \frac{1}{2}$ using Cauchy integral formula.							CO5- App					
			PART	– C (5	x 16= 8	0Marks)							
16.	(a) (i) Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series of period 2π in						CO1- App	(10)					
	the internal $0 < x < 2\pi$. (ii) Find the Half range cosine series for $f(x) = x$ in $(0, \pi)$ Or							CO1- App	(6)				
	(b)	x 0 1 y: 1.8 0.	$\frac{\pi}{3}$ $\frac{2\pi}{3}$.3 0.5	π 2.16	$\frac{4\pi}{3}$ 1.3	$\frac{5\pi}{3}$	2π 1.8	CO1-App	(16)				
	The table of values of the function $y = f(x)$ is given below Find a Fourier series up to the third harmonic to represent												
		f(x) in terms of	X										

2

17. (a) (i) Solve
$$(D^2 - 5DD' + 6D'^2)z = e^{x+y} + sin(x-y)$$
 CO2-App (8)

(ii) Solve
$$x(y-z) p + y(z-x)q = z(x-y)$$
 CO2-App (8)

Or

- (b) (i) Solve $z = px + qy + p^2 q^2$ (ii) Form a PDE by eliminating arbitrary functions from CO2-App (8) $\varphi(x^2 + y^2 + z^2, x + y + z) = 0.$
- 18. (a) A String is stretched and fastened to two points 1 CO3 App (16) apart. Motion is started by displacing the string into the form $y=K(lx-x^2)$ from which it is released at t=0. Find the displacement of any point at a distance 'x' at any time 't'

Or

(b) A bar of 30cm long with insulated sides has its ends A and B CO3- App (16) kept at 20° c and 80°c respectively. Until steady state condition prevails. The temperature at A is then suddenly raised to 60°c and at the same instant B is lower to 40°c and maintained thereafter. Find the subsequent temperature distribution in the bar.

19. (a) (i) Using Milne Thomson method, find the Analytic function CO4-App (8)
given that
$$u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

(ii) Find the image of $|z-1| = 1$ under the transformation $w = \frac{1}{z}$ CO4-App (8)
Or

(b) (i) Find the bilinear transformation from -1,0,1 to 0,i,3i CO4-App (8)

(ii) If f(z) = u + iv is a regular function of z in a domain D the CO4-App (8) following relation hold in D. $\nabla^2 |f(z)|^2 = 4 |f'(z)|^2$

20. (a) (i) Evaluate

CO5-App (8)

$$f(z) = \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z+1)(z+2)} dz$$
 by using Cauchy's Integral
formula where C is $|z| = 3$
(ii) Expand $\frac{z-1}{(z+2)(z+3)}$ as Laurent's series valid in the
region $2 < |z| < 3$.
(8)

(b) Using Contour integration, to prove CO5-App (16)

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0$$