٨		
Λ.	•	
	Λ.	
	\rightarrow	

(a) x-20

a) ± 1

Reg	No.	•
Neg	. 110.	•

Question Paper Code: U2M11

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Second Semester

Artificial Intelligence and Machine Learning

21UMA211-FOURIER SERIES, PARTIAL DIFFERENTIAL EQUATIONS AND

COMPLEX ANALYSIS

		(Regulat	ions 2021)		
Dur	ation: Three hours			Maximum	n: 100 Marks
		Answer Al	LL Questions		
		PART A - (10	x 1 = 10 Marks		
1.	The constant term in	n the Fourier expansion	n for $f(x) = k$, in (0, 2)	(π) is	CO6- U
	(a) 2k	(b) 3k	(c) k	(d) 0	
2.	2. The root mean square value of $f(x)$ in $(0, 1)$ is				CO1- App
	(a) 1	(b)1/2	(c) $l/\sqrt{3}$	(d) 2 <i>l</i>	
3.	3. The PDE obtained from $z = (x+a)(y+b)$ is				CO2-App
	(a) 3z = px + qy	(b) $py - qx = 0$	(c) $z = pq$	(d) px-	+qy = 0
4.	The general solution of $(D^2 - 8DD' + 12D'^2)$ $z = 0$ is CO2-Ap				
	(a) $f_1(y + 2x) + f_2(y + 2x) = f_2(y + 2x) + f_2(y + 2x$	y+6 x)	$(b f_1 (y + 2x) + f$	$\frac{1}{2}(y-6x)$	
	(c) $z = xf(y+3x/2)$ -	g(y+3x/2)	(d) z = xf(y-3x/2)	2)	
5.	Classify the equation	$u_{xx} + u_{yy} = 0$ is			CO6- U
	(a) parabolic	(b)hyperbolic	(c) elliptic	(d) cyc	clic
6.		length 60 cm has its enly, then its steady state	•	ıt 20°C	CO3-App

(c) x+20

a) ± 1

(d) x+60

b) ± 2

CO4- App

(b)4x+20

The critical point of the transformation $w = z + \frac{1}{z}$ are ____

b) ± 2

8. Find the fixed points of $f(z) = \frac{1}{z - 2i}$ (a) i

(b) 2i

(c) 3i

(d) 0

9. The residue of $f(z) = \frac{4}{z^3(z-2)}$ at its simple pole is _____

(a) $\frac{4}{7}$ (b) $\frac{3}{4}$ (c) $\frac{1}{7}$

10. The value of $\int_{C} \frac{dz}{z+2}$, c: |z| = 1 is _____

(a) $2\pi i$ (b) 0 (c) $4\pi i$ (d) 0

PART - B (5 x 2= 10Marks)

11. Give the expression for the Fourier series coefficient bn for the function f(x) = CO1–App x defined in $(-\pi,\pi)$

12. Find the complete solution of $z = px + qy + p^2 - q^2$ CO2-App

13. The ends A and B of a rod of length 10cm long have their CO3-App temperature kept at 20°c & 70°c. Find the steady state temperature distribution on the rod.

14. Prove that analytic function with the constant real part is constant CO4-App

15. Evaluate $\int_{c} \frac{z}{z-2} dz$ where C is |z| = 2

 $PART - C (5 \times 16 = 80 Marks)$

16. (a) (i) Express $f(x) = x^2$ as a Fourier series of period 2π in the CO1-App interval $0 < x < 2\pi$.

(ii) Find the Half range sine series for f(x) = x in $(0, \pi)$ CO1-App (8)

(b) The table of values of the function y = f(x) is given below: CO1- App (16)

X	0	$\pi/3$	$^{2\pi}/_{3}$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π
y:	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Find a Fourier series upto the third harmonic to represent f(x) in terms of x

17. (a) (i) Solve $(D^2 - 5DD' + 6D'^2)z = e^{x+y} + \sin(x-y)$ CO2 -App (8)

(ii) Solve x(y-z)p + y(z-x)q = z(x-y) CO2 -App (8)

(b) (i) Solve $Z = px + qy + p^2 - q^2$

 $\varphi(x^2 + y^2 + z^2, x + y + z) = 0...$

- CO2 -App (8)
- (ii) Form a PDE by eliminating arbitrary functions from
- CO2 -App
- (8)
- 18. (a) A String is stretched and fastened to two points I apart .Motion is CO3-App started by displacing the Velocity $\lambda(1x-x^2)$ from which it is released at t=0.Find the displacement of any point at a distance

 - 'x' at any time 't'.
- (16)

(16)

- Or
- (b) A bar of 10cm long with insulated sides has its ends A and B kept CO3-App at 50° c and 100° c respectively. Until steady state condition prevails. The temperature at A is then suddenly raised to 90°c and at the same instant B is lower to 60°c and maintained thereafter. Find the subsequent temperature distribution in the bar.
- 19. (a) (i) Using Milne Thomson method, find the Analytic function CO4-App (8)given that $u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$
 - (ii) Find the bilinear transformation from -1,0,1 to 0,i,3i
- CO4-App (8)

- (i) Find the image of |z-1|=1 under the transformation
- CO4-App (8)

- $w = \frac{1}{7}$
- (ii) If f (z) is analytic whose real part is constant must itself be a constant
- CO4-App

(8)

20. (a) (i) Evaluate using Cauchy's Integral formula for CO5-App (8)

- $f(z) = \int \frac{2z-1}{(z+1)(z-3)} dz$, where 'C': |z| = 2.
- (ii) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for the region 1 < |z| < 3.

Or

CO5-App (8)

- (b) Using contour integration, to find the value of

CO5-App (16)

 $\int_{-\infty}^{\infty} \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx$