Reg. No. :

		Question Pa	per Code: U2	2E05					
B.E./B.Tech. DEGREE EXAMINATION, MAY 2024									
	Second Semester								
Artificial Intelligence & Data Science									
21UAD205- Digital Logic Design									
(Regulations 2021)									
Duration: Three hours Maximum: 100									
		Answe	er All Questions						
PART A - $(5x 1 = 5 Marks)$									
1.	Conversion of decimal number 5610 to it's binary number equivalent is								
	() 1100110	4 \ 110011100	() 1110000	(1) 1	11110				
2	(a) 1100112(b) 110011102(c) 1110002(d) 111How many full adder required to design 4 bit binary parallel adder								
2.	-				CO2- F				
_	、 /	(b) 2	(c) 3	(d) 4					
3.	3. Which of the following flip-flops is free from the race around the CO1- R blem?								
	(a) T flip-flop	(b) SR flip-flop	(c) Master-Slav	ve Flip-flop (d)) flip-flop				
4.	In synchronous circuit, the present state is determined by CO1								
	(a) unclocked flip-f	flops (b) clocke	d flip-flops	(c) flip-flops	(d) latches				
5.	For programmable	logic functions, whi	ch type of PLD s	hould be used?	CO1- U				
	(a) PLA	(b) PAL	(c) CPLD	(d) SLI	D				
		PART – B	6 (5 x 3= 15 Mark	(S)					
6.	Subtract the following 11011-11001 using 2's complement			CO3- App					
7.	Write the gray code and excess -3 code for the binary code 1010				CO3- App				
8.	Define Priority encoder with truth table and circuit								
9.	List the basic types	of shift registers in	terms of data more	vement.	CO1- R				

С

10.	Giv	en F (A, B, C) = $\sum m (1, 5, 6, 7)$.	CO3- App					
	Re	alize the hazard free circuit for the above function.						
PART – C (5 x 16= 80 Marks)								
11.	(a)	Design K map and minimize using K map method. Implement it using NAND gates $F(A,B,C,D) = \pi \ (0,1,4,5,6,8,9,12,13,14)$ Or	CO3-App	(16)				
	(b)	Reduce the following equation using Quine McClucky method of minimization F(A,B,C,D) = m(0,1,3,4,5,7,10,13,14,15)	CO3-App	(16)				
12.	(a)	Design a circuit for parallel addition and subtraction Or	CO3-App	(16)				
	(b)	Design a circuit for priority encoder	CO3-App	(16)				
13.	(a)	Using SR flip flops, design a parallel counter which counts in sequence 000,111,101,110,001,010,000 Or	CO3-App	(16)				
	(b)	Design MOD-10 Synchronous counter using JK flip-flops. V execution table and State table	CO3-App	(16)				
14.	(a)	Give hazard– free realization for the following Boolean function $f(A,B,C,D) = \pi (0,2,6,7,8,10,12)$ Or	CO3-App	(16)				
	(b)	Give hazard– free realization for the following Boolean function $f(A,B,C,D) = \pi (3,4,7,8,9,12,15)$	CO3-App	(16)				
15.	(a)	Explain in detail about the classification of memories with neat diagram?	CO3-App	(16)				
	Or (b) Implement the following functions using DLA $CO2$ App							
	(b)	Implement the following functions using PLA. F1 (A, B, C) = Σm (1, 2, 4, 6) F2 (A, B, C) = Σm (0, 1, 6, 7) F3 (A, B, C) = Σm (2, 6)	CO3-App	(16)				