	Reg. No. :						
Question Paper Code: U5E02							
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024							
Fifth Semester							
Artificial Intelligence & Data Science							
21UAD502 - FORMAL LANGUAGE AND COMPUTATION							
(Regulations 2021)							
Duration: Three hours Maximum: 100 Marks							
Answer All Questions							
PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$							
1.	Define Deterministic Finite Automaton.	CO2-	-App				
2.	Construct DFA over $\sum = (a,b)$ which produces not more than 3a's.	CO2-	-App				
3.	Find out the language generated by the $RE=(0+1)^*$.	CO2-	-App				
4.	Show whether a language $L=(0^{n}1^{2n} n>0)$ is regular or not using pumping lemma	CO2-	-App				
5.	Define the pumping Lemma for CFL.	CO1-	CO1-U				
6.	What are the ways of language acceptance in PDA?	CO1-	CO1-U				
7.	What are the two normal forms of CFG? Write their productions format?	CO1-	CO1-U				
8.	Draw a transition diagram for a Turing machine to identify nmod2.	CO1-	CO1-U				
9.	Define a universal language Lu.	CO1-	CO1-U				
10.	When do you say Turning machine is an algorithm.	CO1-	CO1-U				
PART – B (5 x 16= 80 Marks)							
11.	(a) Construct DFA equivalent to the NFA given below. CO2	-App	(16)				

	(b)	Given $\sum = \{a,b\}$ Analyze and construct a DFA which recognize the language L={b ^m ab ⁿ : m, n>0}	CO2- App	(16)
12.	(a)	Explain the DFA Minimization algorithm with an Example. Or	CO2- App	(16)
	(b)	State and prove any two closure properties of Regular Languages.	CO2- App	(16)
13.	(a)	Construct the grammar for the following PDAM. $M=(\{q0,q1\},\{0,1\},\{X,z0\},\delta,q0,Z0,\Phi)$ and Where δ is given by $\delta(q0,1,z0)=\{(q0,XZ0)\},$ $\delta(q0,1,X)=\{(q0,XX)\},$ $\delta(q0,0,X)=\{(q1,X)\},$ $\delta(q0,\epsilon,Z0)=\{(q0,\epsilon)\},$ $\delta(q1,1,X)=\{(q1,\epsilon)\},$ $\delta(q1,0,Z0)=\{(q0,Z0)\}.$ Or	CO2- App	(16)
	(b)	(i) Describe the PDA that accept the given CFGS→xaax & X→ax/bx/€	CO2- App	(8)
		(ii) Express a PDA for the language $a^{n}b^{m}a^{n+m}$		(8)
14.	(a)	Explain how a multitrack in a TM can be used for testing given positive integer is a prime or not. Or	CO2- App	(16)
	(b)	Prepare a subroutine to move a TM head from its current position to the right, skipping over all 0"s until reaching a 1 or a blank. If the current position does not hold 0, then the TM should halt. You may assume that there are no tape symbol other than 0,1 and B(blank).Then, use this subroutine to design to TM that accepts all strings of 0"s and 1"s that do not have two 1"s in a row.	CO2- App	(16)
15.	(a)	Prove that Universal language is recursively enumerable but not recursive.	CO1-U	(16)
	(b)	Or Define PCP and prove that PCP is undecidable.	CO1- U	(16)
		_		

U5E02