A		Reg. No. :							
Question Paper Code: U5M01									
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024									
	Fifth Semester								
	Artificial Intelligence & Data Science								
	21UMA501 - LINEAR ALGEBRA								
		(Regulat	ions 2021)						
Dur	ation: Three hours				Maximum:	100 Marks			
Answer ALL Questions									
_		PART A - (10	x 1 = 10 Ma	arks)					
1.	The dim(R ³)is					CO6- U			
	(a) 1	(b) 2	(c) 3		(d) 0				
2.	The trivial subspaces of a vector space V are CO6-U								
•	(a) {0}	(b) V	(c) W		(d) {	0}and V			
3.	If T: V \rightarrow W be linear				(1) 2	CO6- U			
Λ	(a) 0	(b) 1	(c) 2	: 1	(d) 3				
4.	In a linear transformation T: $V \rightarrow W$ the kernel of T is a subspace of CO6-U								
	(a) V	(b) W	(c) bo	th V and W	(d) 1	none of these			
5.	$\langle x, x \rangle = 0$ if and only	if				CO6- U			
	(a) $x = 1$		(c) $x =$	- 0	(d) x	$c \neq 0$			
6.	In a vector space V, it					CO6- U			
	(a) $y = z$		(c) y =		(d)	none of these			
7.	The Hermitian Matrice					CO6- U			
,.	(a) Real	(b) Imaginary	(c) Na		(d)]	None of these			
8.	All Eigen values of a -					CO6- U			
	(a) Symmetric	(b) Skew Symmetri		rmitian	(d) 1	None of these			
	· · · · · ·	· · · · ·	~ /		. ,				

9.	A so is ze	-	e matrix A is said to be if the determinant value of A CO6- U				
	(a) S	Singular	(b) Non - Singular	(c) Symmetric	(d) none of	these	
10.		ear Programming able.	deals with the	- of a function of decision	C	06- U	
	(a) (Optimization	(b) Formulation	(c) Technique	(d) none of t	hese	
			PART – B (5 x 2	2= 10Marks)			
11.	Prov	we that $W = \{(a,0,0)\}$	$a \in R$ is a subspace of	R^3	CO1-	App	
12.	Define Rank nullity theorem				CO6-U		
13.	Find the norm of $(1,2,3)$ in $V_3(R)$ with standard inner product.				CO3 -App		
14.	Let	$\mathbf{A} = \begin{pmatrix} 11 & -6i \\ 4i & 1 \end{pmatrix} \text{ Fin}$	CO6-U				
15.	State whether y = tanx can be expanded as a Fourier series.				CO5- App		
	PART – C (5 x 16= 80Marks)						
16.	(a)	(ii) In R ³ deter		3,0) in \mathbb{R}^3 is a basis of \mathbb{R}^3 is expressed as a linear	CO1- App CO1- App	(8) (8)	
	(b)	(i) Find the dime (1,2,-3) ,(0,0,1) ,	nsion of the subspace space $(-1,2,1)$ in $V_3(R)$	anned by the vectors	CO1 -App	(8)	
			ctor V = $(1,-2,5)$ as a Lin ,1), $e_2 = (1,2,3)$ and $e_3 =$		CO1 -App	(8)	
17.	(a)	$T(a_1, a_2) = (a_1 + a_2)$		ansformation defined by (T) ,rank(T), Is T one-to-	CO2- App	(8)	
		(ii) Find the mat		mation T: $R^2 \rightarrow R^2$ defined	CO2- App	(8)	
	(b)) = $(a_1, 2a_1^2, a_1^3)$ Verify	CO2- App	(16)	

18. (a) (i) Show that the following function defines an inner product on CO3- App (8) $V_{2}(R)$ where $x = (x_{1}, x_{2})$ and $y = (y_{1}, y_{2})$ and $\langle x, y \rangle = 6x_{1}y_{1} + 7x_{2}y_{2}$ (ii) If x = (2, 1+i, i) and y = (2-i, 2, 1+2i) then verify Schwarz's CO3-App (8)inequality.

Or

- (b) Apply Gram-Schmidt process to construct an orthonormal basis for CO3- App (16)with the standard inner product for the basis $\{v_1, v_2, v_3\}$ $V_{3}(R)$ where $v_1 = (1, -1, 0)$, $v_2 = (2, -1, -2)$ and $v_3 = (1, -1, 2)$
- 19. (a) Construct a QR factorization for a matrix CO4- App (16) $\mathbf{A} = \begin{bmatrix} -4 & 4 & 2 \\ 4 & -4 & 1 \\ 2 & 1 & 0 \end{bmatrix}$

Or

- Determine the Cholesky Decomposition for (b) CO4- App (16) $\mathbf{A} = \begin{vmatrix} -3 & 16 & -5 & -8 \\ 5 & -5 & 24 & 0 \\ -8 & -8 & 0 & 21 \end{vmatrix}$
- 20. (a) From the following information state whether the condition of the CO5- App (16)child is associated with the condition of the house

Condition of			Total
child	Clea	Dirty	
Clean	69	51	120
Fairly clean	81	20	101
Dirty	35	44	79
Total	185	115	300

Or

- (b) The Savings bank account of a customer showed an average balance CO5- App (16) of Rs. 150 and a SD of Rs 50 assuming that the account balances are normally distributed.
 - i) What percentage of account is over Rs. 200?
 - ii) What percentage of account is between Rs.120 and Rs. 170 ?
 - iii) What percentage of account is less than Rs. 75 ? (0 < z < 04 = 0.3811, 0 < z < 0.6 = 0.2257,

0 < z < 1.5 = 0.4332, 0 < z < 1 = 0.3143)