Reg. No. :

Question Paper Code: U3026

B.E./B.Tech. DEGREE EXAMINATION, MAY 2024

Third Semester

Agriculture Engineering

21UMA326- TRANSFORM TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to Biomedical and Biotechnology Engineering)

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10x 1 = 10 Marks)

The term $(a_1 \cos x + b_1 \sin x)$ in fourier series is called 1. CO6-U (a) First harmonic (b) Second harmonic (c) Third harmonic (d) Fourier Coefficients Cos x is a periodic function with period _____ CO6- U 2. (a) π (b) 2π $(c)\pi/3$ (d) $2 \pi/3$ 3. If F[f(x)] = f(s) then the function is said to be CO6- U (a) Odd (b) Even (c) Self-Reciprocal (d) Periodic If F[f(x)] = f(s) then F[f(ax)] =4. CO2- App (a) $\frac{1}{-a}F\left(\frac{s}{a}\right)$ (b) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (c) $\frac{1}{|a|}F\left(\frac{s}{a}\right)$ (d) $\frac{1}{s}F\left(\frac{s}{a}\right)$ 5. If $Z{f(t)} = F(Z)$, then $Z{e^{-at}f(t)} =$ _____ CO6- U (a)F $[e^{a^T}]$ (b)F $[Ze^{a^T}]$ (c)F $[Ze^{-a^T}]$ (d)F $[e^{-aT}]$ 6. Z[n f(n)] = _____ CO6-U (a) $-z \frac{d}{dz} F(Z)$ (b) $z \frac{d}{dz} F(Z)$ (c) $\frac{d}{dz} F(Z)$ $\left(\mathbf{d}\right)_{z}^{n} \frac{d}{dz} F(Z)$ 7. The PDE obtained from z = (x+a)(y+b) is ____. CO4- App (a) 3z = px + qy (b) py - qx = 0 (c) z = pq(d) px+qy = 0

A

8.	The particular integral of $(D^2 - 4DD' + 3D'^2) = e^{x+y}$ is											CO4- App		
	(a) $\frac{xe^{x+y}}{2}$ (b) $-\frac{xe^{x+y}}{2}$				$(\text{iii})\frac{x^2e^{x+y}}{2} \tag{(}$				$(iv) \frac{-x^2 e^x}{2}$	iv) $\frac{-x^2 e^{x+y}}{2}$				
9.	Classify the equation y2uxx+uyy = 0 is											CO	06- U	
	(a) parabolic (b) hyperbolic							(c) elliptic				(d) cyclic		
10.	An insulated rod of length 60 cm has its ends at A and B kept at 20oC and CO5- App 80oC respectively, then its steady state solution is												- App	
	(a) z	x-20		(b) 4x	+20		(c)) x+20			(d) x+60			
	$PART - B (5 \times 2 = 10 Marks)$													
11.	Find a_0 and a_n in the Fourier series of $f(x) = x + x^3$ in $(-\pi,\pi)$ CO1- A												- App	
12.	Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$ CO2											- App		
13.	Find $Z\left[\sin\left(\frac{n\pi}{2}\right)\right]$										CO3- App			
14.	Solve: $(D^2 - 4DD' + 4D'^2)Z = \sin(x + y).$											CO4- App		
15.	Write the three Possible solutions of the one dimensional wave equations CO5-												D5- U	
	PART – C (5 x 16= 80Marks)													
16.	(a) (i) Find the Fourier series of $f(x) = \begin{cases} -1+x, -\pi < x < 0 \\ 1+x, 0 < x < \pi \end{cases}$ of										CO1	CO1 - App (8)		
	periodicity 2π . (ii) Find the Half range cosine series for $f(x) = x(\pi - x)$ in $(0, \pi)$.										CO1	CO1 -App (8)		
	Deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} \dots = \frac{\pi^4}{90}$													
	Or (b) The table of values of the function $y = f(x)$ is given below: CO1 -App												(16)	
	(-)						$\frac{4\pi}{3}$	-	2π			-FF	()	
			y 1.	1.4	1.9	1.	1.5	1.2	1.					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	Find a Fourier series upto the third harmonic for $f(x)$ in terms of x .													
17.	(a)	Find the	Fourie	r trans	form	of f(x	$\mathbf{x} = \begin{cases} \mathbf{a} - \mathbf{a} \\ 0 \end{cases}$	x , if if	x x x >	$ \leq a$ and a	d CO2	Арр	(16)	
							2							

U3026

hence deduce that
$$(i) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt (ii) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt$$

Or

(b) Evaluate (i)
$$\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$$
 (ii) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + 49)^2}$ CO2 -App (16)

18. (a)
(i) Solve the difference equation
$$y_{n+2} + 6y_{n+1} + 9y_n = 2^n$$
 CO3- App (8)
given that $y_0 = 0, y_1 = 0$

(ii) Using Convolution theorem find
$$Z^{-1}\left[\frac{8z^2}{(4z-3)(2z+1)}\right]$$
 CO3- App (8)

Or

(b) (i) Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 2^n$ CO3- App (8) given that $y_0 = 0, y_1 = 0$ (ii) Evaluate $Z[r^n \cos n\theta]$ and $Z[r^n \sin n\theta]$. CO3- App (8)

19. (a) (i) Solve
$$x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$$
 CO4-App (8)
(ii) Solve $(D^2 - DD' - 2D'^2)z = 2x + 3y + e^{3x+4y}$ CO4-App (8)

Or

(b) (i) Solve
$$x(y-z)p + y(z-x)q = z(x-y)$$
 CO4-App (8)

(ii) Solve
$$(D^2 - 7DD' + 6D^{2})z = e^{2x+y}$$
 CO4-App (8)

- 20. (a) A String is stretched and fastened to two points l apart .Motion is CO5- App (16) started by displacing the string into the form y=K(lx-x²) from which it is released at t=0.Find the displacement of any point at a distance 'x' at any time 't'.
 - (b) A tightly String with fixed end points x=0 and x=l is initially at CO5- App (16) rest in its equilibrium position. If its set vibrating giving each point at velocity λ(lx-x²).Find the displacement.

U3026