A		Reg. No. :					
Question Paper Code: 53021							
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2024							
	Third Semester						
	Civil Engineering						
15UMA321 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS							
(Common to EEE, ECE, EIE, MECH, Chemical, Biomedical and							
		Agriculture Engi	neering Branches)				
		(Regula	tion 2015)				
Duration: Three hours Maximum: 100 Marks							
		Answer AL	L Questions				
PART A - (10 x 1 = 10 Marks)							
1.	The constant term in	the Fourier series is		CO1- R			
	(a) a ₀	(b) b ₁	(c) a ₅	(d) b ₄			
2.	The root mean squar	The value of $f(x) = x$ in (0, 1) interval	CO1- R			
	(a) 2/3	$(b)1/(3)^{1/2}$	(c) $2/(3)^{1/2}$	(d)4/5			
3.	Fourier integral of f	$(\mathbf{x}) = 1. \ 0 < \mathbf{x} < \infty$		CO2- R			
	(a) 0	(b)1	(c) Not defined	(d) Very large number			
4.	Give a function which	ch is self reciprocal ur	der sine transform	CO2- R			
	(a) x	(b) x^2	(c) $1/(x)^{(1/2)}$	(d) $1/(x)^{(3/2)}$			
5.	Find $Z[a^{n-1}]$			CO3- R			
	(a) $\frac{az}{z-1}$	(b) $\frac{1}{z-1}$	(c) $\frac{z^2}{z-a}$	(d) $1/a (\frac{z}{z-a})$			

6. Find CO3- R

$$Z^{-1}\left[\frac{z}{z+1}\right]$$
(a) (-1)ⁿ (b) (-a)ⁿ (c) (-t)ⁿ (d) (1)ⁿ
7. The p.d.e of z = ax+by is CO4- R
(a) x+y (b) qx+py (c) px+qy (d) x-y
8. Find the P.I of $[D^2 + 4DD']z = e^x$ CO4- R
(a) 1 (b) e^x (c)0 (d) e^{x-1}
9. What is the constant a^2 in the wave equation CO5- R
(a) $a^2 = \frac{T}{m}$ (b) $a^2 = \frac{1}{m}$ (c) $a^2 = \frac{T}{2}$ (d) $a^2 = \frac{T^2}{m}$
10. Governing equation of two dimensional steady state heat equation is CO5- R
(a) $\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} = 0$ (b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 1$ (c) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y} = 0$ (d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
PART – B (5 x 2= 10 Marks)

11.	Explain Dirichlet's condition	CO1- R
12.	State the Convolution theorem for Fourier Transforms	CO2- R
13.	Define Difference equations	CO3- R
14.	From the p.d.e by eliminating arbitrary constants a and b from	CO4- R
	$z = (x+a)^2 + (y-b)^2$	
1.7		COT D

15. Write all variable separable solutions of the one dimension heat equation. CO5- R PART – C (5 x 16= 80Marks)

16. (a) Find the Fourier series of x^2 in $(-\pi, \pi)$. Hence prove the CO1- App (16) following

$$(a)\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{6}$$
$$(b)\frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}} - \dots = \frac{\pi^{2}}{12}$$
$$(c)\frac{1}{1^{4}} + \frac{1}{2^{4}} + \frac{1}{3^{4}} + \dots = \frac{\pi^{4}}{90}$$

Or

(b) Determine the first two harmonic of the Fourier series for the CO1- App (16) following values.

X:	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$
Y:	1.98	1.30	1.05	1.30	-0.88	-0.25

17. (a) Find the Fourier transform of (1 + 1)

$$f(x) = \begin{cases} 1 - |x| & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}.$$

Hence deduce the following:

$$(i)\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}$$

$$(ii)\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}$$

$$CO2- App \qquad (4)$$

$$CO2- App \qquad (4)$$

Or

(b) Show that CO2- App (16) $-r^{2/2}$: 16 i I I C i T f

 $e^{-x^2/2}$ is self reciprocal under Cosine Transform.

CO2- App

(8)

18. (a)	Find	CO3- Ana	(4)
	(i) Z [$a^n \cos n\theta$]		
	(ii) $Z [\sin n\theta]$	CO3- Ana	(4)
	(iii) Using convolution theorem, evaluate the inverse	CO3- Ana	(8)

$$Z - \text{transform of } \frac{z^2}{(z-a)(z-b)}$$

Or

(b) Solve CO3- Ana (16) $y_{n+2} + 6 y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$, using Z – transform.

19. (a) (i) Find the singular integral of
$$z = px + qy + p^2 + pq + q^2$$
 CO4-App (8)

(ii) Solve
$$p\sqrt{x} + q\sqrt{y} = \sqrt{z}$$
 CO4-App (8)

Or

- (b) Solve $(D^2 + 2DD' + D'^2)z = x^2y + e^{x-y}$. CO4- App (16)
- 20. (a) A tightly stretched flexible string has its ends fixed at x = 0 and CO5-U (16) x = ℓ. At time t = 0, the string is given a shape defined by f (x) = kx(ℓ-x), where 'k' is constant and then released from rest. Find the displacement of any point 'x' of the string at any time t > 0.
 - Or (b) An insulated rod of length *l* has its ends A and B maintained CO5-U (16) at $\stackrel{0}{O}$ C and 100° c respectively until steady state conditions prevail. If B is suddenly reduced to 75° C and at A raised to 25° C, find the temperature at a distance x from A at time t.