A		Reg. No. :										
	Question Paper Code:U4M25											
	B.E./B.Tech. DEGREE EXAMINATION, APRIL 2024											
	Fourth Semester											
	Agricultural Engineering											
	21UMA425 - PRO	BABILITY, STATIS	STICS AND NUMERI	CAL METHODS								
		(Regulati	ons 2021)									
		(Statistical Tabl	es are permitted)									
Dura	ation: Three hours			Maximum: 100 Marks								
		Answer AL	L Questions									
		PART A - (10 :	x 1 = 10 Marks)									
1.	The limiting form a Po	oisson distribution is		CO6- U								
	(a) Geometric	(b) Binomial	(c) Normal	(d) None of the above								
2.	Probability of an impo	ossible event is		CO6- U								
	(a) 1	(b) 10	(c)0	(d) 100								
3.	The degrees of freedom	m in t-tests is		CO6- U								
	(a) n-1	(b) n-2	(c) n-3	(d) n-4								
4.	Large sample size is			CO6- U								
	(a) 30	(b)>30	(c) <30	(d) none of these								
5.	Latin square design is	a		CO6- U								
	(a) One way	(b) Two way	(c) Three way	(d) None of these								
6.	The stimulus to the de design came from	velopment of theory	and practice of experim	nental CO6- U								
	(a) Agricultural resear	ch	(b) Bio medical rese	earch								
	(c) Chemical research		(d) None of these									
7.	The n th divided differe	ence of n th degree poly	ynomial is	CO6- U								
	(a) constant	(b) variable	(c) equal	(d) unequal								

8. In Newton's backward formula, v =.

	(a) $\frac{x - x_0}{h}$ (b) $\frac{x - x_1}{h}$ (c) $\frac{x - x_2}{h}$							(d) $\frac{x-x_n}{h}$					
9.	The Simpson's one third rule is approximated by											CO6- U	
	(a) parabola (b) trapezoidal (c) hyperbola										(d) elliptic		
10.	Gaussian three point quadrature formula is exact for polynomials up to degree								to	С	2 06- U		
	(a) 1			(b)	2		(c) 3				(d) 5	
	PART - B (5 x 2= 10 Marks)												
11.	Define Normal distribution.										CO6- U		
12.	. Write the important properties of Chi-square-distribution									CO6- U			
13.	. Write down the ANOVA table for CRD.										CO6- U		
14.	Whe	n will we a	apply	y Newt	ons for	ward i	nterpol	ation fo	ormula	?		CO	6- U
15.	Writ	e down Ro	ombe	rg's fo	rmula	for I ₁	and I	as we	ll as <i>1</i>	$_{2}$ and I_{3}		CO	6 -U
					PA	ART –	C (5 x	16= 80	Marks	5)			
16.	(a)	A Randor	n Va	riable	X has	the fol	llowing	, probal	oility (distributi	on	CO1- App	(16)
	X=x 0 1 2 3 4 5 6 7 D(X_x) 0<												
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
	(ii) $P(X < 6)$, $P(X \ge 6)$, $P(0 < X < 4)$, (iii) $P(X < 6/X > 4)$												
	(iv) Find the minimum value of ' λ 'such that $P(X \le \lambda) > \frac{1}{2}$												

Or

(b) (i) Using the probability mass function for Binomial distribution, CO1- App (8)
 Compute the moment generating function and hence find its mean and variance.

(ii) Using an Exponential distribution State and Prove the memory CO1 - App (8) less property

CO6- U

17. (a) (i) Two independent samples of sizes 9 and 7 from a normal CO2- Ana (8) population had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample	16	19	13	16	18	13	15		
II									

Do the estimates of the population variance differ significally at 5% level?

(ii) Two group of students A and B were tested , the marks CO2- Ana (8) obtained were as follows

А	18	20	36	50	49	36	34	49	41
В	29	28	26	35	30	44	46		

Examine the significance of difference between the average marks secured by the students of the above two groups

Or

(b) (i) The theory predicts the population of beans in the four groups CO2- Ana (8)
A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?

(ii) Two random samples gave the following results:

SamplesSizeSample
MeanSum of the squares of
deviation from the mean110159021214108

Examine whether the samples come from the same normal population

18. (a) Four varieties A, B, C, D of a fertilizer are tested in a randomized CO3- Ana (16) block design with 4 replication. The plot yields in pounds are as follows.

	1	2	3	4
1	A(12)	D(20)	C(16)	B(10)
2	D(18)	A(14)	B(11)	C(14)
3	B(12)	C(15)	D(19)	A(13)
4	C(16)	B(11)	A(15)	D(20)

Analyse the experimental yield.

Or

CO2- Ana (8)

(b) Analyze the variance in the latin square of yields(in kgs) paddy CO3- Ana (16) where P,Q,R,S denote the different methods of cultivation.

S122	P121	R123	Q122
Q124	R123	P122	S125
P120	Q119	S120	R121
R122	S123	Q121	P122

19. (a) Fit a natural cubic spline for the following dataCO4- App (16)

Х	-1	0	1	2
Y	-1	1	3	35
	Or			

(b)	(i) Find f	CO4- App	(8)							
		Х	-4	-1	0	2	5			
		Y	1245	33	5	9	1335			

(ii) Using Newton's backward interpolation formula find f(4) CO4- App (8)

X	0	1	2	3
у	1	2	3	10

20. (a) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{1+x+y}$ by (i). Trapezoidal (ii) Simpson's rule by CO5- App (16) taking h=k=0.25

Or

(b) (i) Evaluate $\int_{0}^{2} \frac{dx}{x^{2} + 4}$ using Romberg method by taking h=1, 0.5 CO5- App (8) and 0.25 successively.

(ii) Evaluate. $\int_{1}^{s} \frac{dx}{x}$ Using three point Gaussian quadrature CO5- App (8) formula.