A		Reg. No. :												
		Question	Pape	r Coo	le: U	J 5A	.03							
	B.E. /	B.Tech. DEG	REE EX	KAMIN	ATI	ON,	APR	IL 2	2024					
			Fifth S	Semeste	er									
		Agr	icultura	l Engir	eerir	ıg								
	21UAG503-STRI	ENGTH OF MA	ATERIA	ALS FO	DR A	GRI	CUL	TUF	RE E	NGI	NEE	RS		
		(.	Regulat	ions 20	21)									
Dur	ation: Three hours							Ma	ximu	ım: 1	00 N	Marl	ks	
		Ans	swer AI	LL Que	stion	S								
		PART	A - (10	x 1 = 1	0 Ma	arks)								
1.	Volumetric strain is d	efined as											CC)1- U
	(a) dV/V	(b) dL/L		(c) db	/b				(d) dd/	ďd			
2.	Stress is defined as th	e ratio of											CC)1- U
	(a) Load to area	area (c) load to volume						(d	(d) pressure to volume					
3.	Which equation is use	ed to find out th	e perfe	ct fram	e								CC)1- U
	(a) m= 2j+3	(b) m= 2j-2		(c) m=	= 2j-3	3			(d) m=	= 2j+	2		
4.	A frame in which all member not lie in a single frame is called										CC)1- U		
	(a) Plain frame	(b) Space fram	ne	(c) de	ficieı	nt fra	ime		(d) red	udar	nt fr	ame	;
5.	The bending moment	at end supports	s of a si	mply su	ıppoı	ted b	beam	is					CC)1- U
	(a) maximum	(b) minimum		(c) ze	ro				(d) uni	form	1		
6.	Sagging, the bending	moment occurs	at the	(of the	e bea	m.						CC)1- U
	(a) At supports	(b) Mid span	(c) Poin	t of c	ontra	aflex	ure	(d) Poi	int of	f err	nerg	ence
7.	is a measure of the	ne strength of sl	naft in r	otation									CC)1- U
	(a) Polar modulus	(b) Sectional m	odulus	(c)	Tors	sion 1	modu	lus	(d) To	rsion	al r	igid	ity
8.	The units of torsional	rigidity is											CC)1- U
	(a) Nmm ²	(b) N/mm		(c) N-	mm				(d) N				

9. The radius of curvature of the deflected beam is

(a)
$$\frac{M}{I} = \frac{E}{R}$$
 (b) $\frac{M}{J} = \frac{E}{R}$ (c) $\frac{N}{I} = \frac{E}{R}$ (d) $\frac{M}{C} = \frac{E}{R}$

10. Deflection of simply supported beam with point load as centre is---

(a)
$$y_c = \frac{w \ l^3}{48EI}$$
 (b) $y_c = \frac{w \ d^3}{EI}$ (c) $y_c = \frac{w \ ld^3}{EI}$ (d) $y_c = \frac{w \ d^3}{El}$
PART – B (5 x 2= 10Marks)
11. Define young's modulus. CO1- U
12. Explain in detail about deficient frame. CO1- U
13. State the points to remember for drawing SF and BM diagram. CO1- U
14. What is meant by torsional rigidity? CO1- U

15. Give the deflection equation of simply supported beam with point load at centre CO1-U

$$PART - C (5 \times 16 = 80 Marks)$$

- 16. (a) Two vertical rods one of steel and the other of copper are each rigidly CO2- App (16) fixed at the top and 50 cm apart. Diameters and lengths of each rod are 2 cm and 4 m respectively. A cross bar fixed to the rods at the lower end carries a load of 5000 N such that the cross bars remains horizontal even after loading. Find the stress in each rod and position of the load on the bar. Take $E= 2 \times 10^5$ N/mm2 for steel and take $E= 1 \times 10^5$ N/mm² for copper
 - Or
 - (b) Determine the changes in length , breath, thickness, volumetric strain CO2- App (16) and final volume of the steel bar of a steel bar is 5 m long, 20 mm wide and 10 mm thick and is subjected to an axial pull of 20 kN in the direction of its length. Take $E= 2 \times 10^5$ N/mm² and poisson's ratio =0.3

CO1- U

CO1- U

17. (a) Determine the forces in all the members of the truss shown in fig. by CO2- App (16) using the method of joints.

(b) Determine the forces in the members as shown in fig. by using the CO2- App (16) method of tension coefficient

18. (a) A cantilever beam of length 2 m carries a uniformly distributed load CO2- App (16) of 1 kN/m run over the entire length of 1.5 m from the free end draw the shear force and bending moment diagrams for the cantilever.

Or

- (b) A 9 m length of SSB carries point load of 5 kN and 8 kN at distances CO2- App (16) of 3 m and 6 m from the left end. Draw the shear force and BM diagrams for the SSB
- 19. (a) Derive the equation for torque developed by the hollow circular shaft CO2- App (16) and give the assumptions.

Or

(b) The shearing stress is a solid shaft is not to exceed 40 N/ mm² when CO2- App (16) the torque transmitted as 20000 N- m. determine the minimum diameter of the shaft.

20. (a) Determine (i) slope at the left support (ii) deflection under the load CO2- App (16) and (iii) maximum deflection of a simply supported beam of the length 5 m, which is carrying a point load of 5 kN at a distance of 3 m from the left end. Take E for the material of the beam= $2.1 \times 10^5 \text{N/mm}^2$ and I= $1 \times 10^8 \text{mm}^4$

Or

(b) A beam 3 m long, simply supported at its ends, is carrying a point CO2- App (16) load W ascentre. If the slope at the ends of the beam should not exceed 1°, find the deflection at the centre of the beam.