- VIIII SEA

Reg. No.:						
0		}			ì	

Question Paper Code: 95383

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015

Second Semester

Software Engineering

XCS 122/10677 SW 202 — ANALYTICAL GEOMETRY AND REAL AND COMPLEX ANALYSIS

(Common to M.Sc. Information Technology and Computer Technology)

(Regulations 2003/2007/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Evaluate $\iint xydxdy$ over the positive quadrant of $x^2 + y^2 = 1$
- 2. Evaluate: $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyz \, dz dy dx.$
- 3. Find 'a' such that $\overline{F} = (ax+3y)\overline{i} + (2y-3z)\overline{j} + (x-3z)\overline{k}$ is solenoidal.
- 4. State "Stoke's theorem".
- 5. Find the intercepts made by the plane 2x + 3y + 6z 12 = 0 on the co-ordinate axes.
- 6. Find the equation to the tangent plane at (1, -1, 2) to the sphere $x^2 + y^2 + z^2 2x + 4y + 6z 12 = 0$.
- 7. Prove that $f(z) = e^z$ is analytic everywhere in the complex plane.
- 8. Prove that xy^2 cannot be real part of an analytic function.
- 9. Evaluate $\int_{C} (z-2)^n dz$.
- 10. State Cauchy Residue theorem.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Change the order of integralion in $\int_{0}^{1} \int_{0}^{x} dy dx$. and hence evaluate. (8)
 - (ii) Evaluate $\iiint_{v} dxdydz$, where the V is the volume of the tetrahedron whose vertices are (0,0,0), (0,1,0), (1,0,0) and (0,0,1). (8)
 - (b) (i) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration. (8)
 - (ii) Find the volume of the sphere $x^2 + y^2 + z^2 = 1$ by triple integrals. (8)
- 12. (a) (i) Using Green's theorem, evaluate $\int_C (\sin x y) dx \cos x \, dy$ where C is the triangle with vertices (0,0), $\left(\frac{\pi}{2},0\right)$ and $\left(\frac{\pi}{2},1\right)$. (6)
 - (ii) Show that $\overline{F} = (2xy + z^3)\overline{i} + x^2\overline{j} + 3x z^2 \overline{k}$ is a conservative force field. Find the scalar potential and the work done by \overline{F} in moving an object in this field from (1,-2,1) to (3,1,4).

Or

- (b) (i) What is the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z 3 = 0$ at (2,-1,2)? (6)
 - (ii) Verify Gauss Divergence theorem for $\overline{F} = 4xz\overline{i} y^2\overline{j} + yz\overline{k}$ over the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (10)
- 13. (a) (i) Find the foot of the perpendicular drawn from p(-2,7,-1) to the plane 2x y + z = 0 and also the image of p in the plane. (8)
 - (ii) Show that the lines $\frac{x-4}{5} = \frac{y-3}{-2} = \frac{z-2}{-6}$ and $\frac{x-3}{4} = \frac{y-2}{-3} = \frac{z-1}{-7}$ are coplanar. Find their point of intersection and equation of the plane in which they lie.

Or

- (b) (i) Find the equation of the sphere which passes through the points (1,-4,3), (1,-5,2) and has its centre on the line $\frac{x+4}{-4} = \frac{y+2}{1} = \frac{z-6}{3}$. (8)
 - (ii) Find the equation of the tangent planes to the sphere $x^2 + y^2 + z^2 4x + 2y 6z + 5 = 0$ which are parallel to the plane 2x 2y z = 0.

- 14. (a) (i) Show that $f(z) = z^n$ is analytic for positive integral values of n and find f'(z). (8)
 - (ii) Find the analytic function whose imaginary part is $e^x(x \sin y + y \cos y)$. (8)

Or

- (b) (i) If P + iQ is an analytic function of z and if $P = \frac{2\sin 2x}{e^{2y} + e^{-2y} 2\cos 2x}$ determine Q. (8)
 - (ii) If f(z) = u + w is an analytic function of z = x + iy prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z)^2 = 4|f'(z)|^2.$ (8)
- 15. (a) (i) Evaluate $\int_{0}^{2\pi} \frac{\sin^{2}\theta}{5-3\cos\theta} d\theta$, using contour integration. (10)
 - (ii) Find the Laurent's series of $f(z) = \frac{1}{z(1-z)}$ valid in the region |z+1| < 1.

Or

- (b) (i) If $f(a) = \int_{C} \frac{3z^2 + 7z + 1}{z a} dz$, where C is the circle |z| = 2, find the values of f(3), f'(1-i) and f''(1-i). (10)
 - (ii) Evaluate $\int_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz$, where C is |z| = 3, using Cauchy's residue theorem. (6)