CO	
	*47

Question Paper Code: 95282

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Software Engineering

EMA 005 — DISCRETE MATHEMATICS

(Regulations 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 \times 2 = 20 marks)

- 1. Define disjunctive and conjunctive normal forms of a statement.
- 2. Negate the statement "Every student in this class is intelligent" in two different ways.
- 3. Give an example of a relation that is neither symmetric nor antisymmetric.
- 4. Find the inverse of the function $f: R \to R^+$ defined by $f(x) = e^{2x-5}$.
- 5. State the basic properties of a group.
- 6. What is group code?
- 7. Prove that the additive inverse of every element of the ring is unique.
- 8. What is the prime field of C?
- 9. Write the distributive inequalities of a Lattice.
- 10. Simplify $(a \cdot b)' + (a + b)'$.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.

(8)

(ii) Use mathematical induction to show that $1+2+2^2+2^3+...+2^n=2^{n-1}-1$ for all nonnegative integers n. (8)

Or

- (b) (i) Show that $t \wedge s$ can be derived from the premises $p \rightarrow q, q \rightarrow \sim r, r, p \vee (t \wedge s)$. (8)
 - (ii) Without constructing the truth tables, find the principal disjunctive normal form of the statement $(\sim p \rightarrow q) \land (q \leftrightarrow p)$. (8)

- 12. (a) (i) Let R be the relation on the set of ordered pairs of positive integers such that $(a,b),(c,d) \in R$ if and only if a+d=b+c. Show that R is an equivalence relation. (8)
 - (ii) If $A = \{x \in R / x \neq 1/2\}$ and $f: A \to R$ is defined by f(x) = 4x/(2x-1), show that f is invertible and find the range of f. (8)

Or

- (b) (i) Let R be the relation consisting of all pairs (x, y) such that x and y are strings of uppercase and lowercase English letters with the property that for every positive integer n, the nth characters in x and y are the same letter, either uppercase or lowercase. Show that R is an equivalence relation. (8)
 - (ii) Show that the functions $f: R \to A$ and $g: A \to R$, where $A = (1, \infty)$ defined by $f(x) = 3^{2x} + 1$ and $g(x) = \frac{1}{2} \log_3(x 1)$ are inverses. (8)
- 13. (a) (i) If G is the set of all ordered pairs (a,b), where $a(\neq 0)$ and b are real and the binary operation * on G is defined by (a,b)*(c,d)=ac,bc+d), Show that (G,*) is an non-ableian group. Show also that the subset H of all those elements of G which are of the form (a,b) is a subgroup of G. (8)
 - (ii) If C^* and R^* are multiplication groups of non-zero complex numbers and non-zero real numbers respectively and if the mapping $f: C^* \to R^*$ is defined by f(z) = |z|. Show that the mapping f is a homomorphism. (8)

Or

- (b) (i) State and prove Lagrange's theorem. (8)
 - (ii) Find the code words generated by the encoding function

 $e:B^2 o B^5$ with respect to the parity check matrix $H=\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (8)

- 14. (a) (i) Show that a set M of all 2×2 matrices over integers forms a ring under a matrix multiplication and matrix addition. (8)
 - (ii) Show that the set R[x] of all polynomials over an arbitrary ring R is a ring with respect to addition and multiplication of polynomials. (8)

Or

- (b) (i) Show that the set of numbers of the form $a + b\sqrt{2}$ with a and b as rational numbers is a field. (8)
 - (ii) Prove that the set of integers $R = \{0,1,2,3,4\}$ forms a field under addition modulo 5 and multiplication modulo 5. (8)
- 15. (a) (i) Consider a set $S = \{a, b, c\}$. Is the relation of set inclusion \subseteq is a partial order on P(S) where P(S) is a power set of S? (8)
 - (ii) Prove that the complement of every element on a Boolean algebra B is unique. (8)

. Or

- (b) (i) If (L, \leq) is a Lattice, prove that for any $a, b, c \in L, a \land (b \lor c) = (a \land b) \lor c$. (8)
 - (ii) In a Boolean algebra, prove that the statements a+b=b, a.b=a are equivalent. (8)