

| Reg. No.: |  |  |  |  |  |  |
|-----------|--|--|--|--|--|--|
|-----------|--|--|--|--|--|--|

## Question Paper Code: 95293

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

First Semester

Software Engineering

ESE 013 — PROBLEM SOLVING TECHNIQUES

(Common to 5 Year M.Sc. Software Systems)

(Regulations 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$ 

- 1. Write any four quality of an algorithm.
- 2. What is the need for program verification?
- 3. Define prime number. Give an example.
- 4. Give the algorithm for finding the square root of a number by factoring method.
- 5. What is an exchange sort?
- 6. Compare binary search and hash search.
- 7. Define queue.
- 8. Write down the applications of stack.
- 9. Define Tower of Hanoi problem.
- 10. Write non-recursive algorithm for inorder traversal of an ordered binary tree.

## PART B — $(5 \times 16 = 80 \text{ marks})$

| 11.         | (a) | (i)                                                                            | Explain the various phases involved in problem solving. (10)                                                                              |  |  |  |  |  |
|-------------|-----|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             |     | (ii)                                                                           | How to test the efficiency of an algorithm? Explain with an example. (6)                                                                  |  |  |  |  |  |
|             |     |                                                                                | Or                                                                                                                                        |  |  |  |  |  |
|             | (b) | (i)                                                                            | Explain top-down design of algorithm with an illustration. (10)                                                                           |  |  |  |  |  |
|             |     | (ii)                                                                           | Explain the counting algorithm with an example. (6)                                                                                       |  |  |  |  |  |
|             | (a) | (i)                                                                            | Design an algorithm to find the minimum and maximum elements in an array of $n$ elements.                                                 |  |  |  |  |  |
|             |     | (ii)                                                                           | Using the factoring technique, find the GCD of two numbers. (4) Or                                                                        |  |  |  |  |  |
|             | (b) | (i)                                                                            | Write a pseudo code to design the removal of duplicates from an ordered array with example. (8)                                           |  |  |  |  |  |
|             |     | (ii)                                                                           | Write an algorithm to find the $K^{th}$ smallest element in an array having $n$ elements with example. (8)                                |  |  |  |  |  |
| 13. (a)     | (a) | Explain the following in detail:                                               |                                                                                                                                           |  |  |  |  |  |
|             |     | (i)                                                                            | Sort by partitioning (8)                                                                                                                  |  |  |  |  |  |
|             |     | (ii)                                                                           | Text line editing. (8)                                                                                                                    |  |  |  |  |  |
|             |     |                                                                                | Or                                                                                                                                        |  |  |  |  |  |
|             | (b) | (i)                                                                            | Write the pseudo code for diminishing incrementing sort. (8)                                                                              |  |  |  |  |  |
|             |     | (ii)                                                                           | Briefly explain the two-way merge sort. (8)                                                                                               |  |  |  |  |  |
| 14.         | (a) | Explain the following operations on a binary tree using suitable example. (16) |                                                                                                                                           |  |  |  |  |  |
|             |     | (i)                                                                            | Find a node                                                                                                                               |  |  |  |  |  |
|             |     | (ii)                                                                           | Insert a node                                                                                                                             |  |  |  |  |  |
|             |     | (ii)                                                                           | Delete a node.                                                                                                                            |  |  |  |  |  |
|             |     |                                                                                | Or                                                                                                                                        |  |  |  |  |  |
|             | (b) | (i)                                                                            | What is a stack? Explain the various operations performed on a stack with suitable examples. (10)                                         |  |  |  |  |  |
|             |     | (ii)                                                                           | Highlight the salient the features of linked list. (6)                                                                                    |  |  |  |  |  |
| <b>15</b> . | (a) | Desi                                                                           | ign a recursive procedure for inorder, preorder and postorder ersals of an ordered binary tree with suitable example. (16)                |  |  |  |  |  |
|             |     |                                                                                | Or                                                                                                                                        |  |  |  |  |  |
|             | (b) | follo                                                                          | lain the recursive version of a quick sort algorithm and sort the wing numbers using quick sort procedure. (16) 35, 8, 18, 14, 41, 3, 39. |  |  |  |  |  |