	 <u> </u>]	i				
Reg. No.:		1		ļ				
		<u>. I</u>	l		<u> </u>	 i		

Question Paper Code: 95400

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Software Engineering

XCS 352/10677 SW 505 — THEORY OF COMPUTATION

(Common to 5 Year M.Sc. Computer Technology and M.Sc. Information Technology)

(Regulations 2003/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Define pumping lemma for regular languages.
- 2. Show the equivalence between regular expression and finite automata.
- 3. Write a CFG to generate the set $\{a^m b^n c^p / m + n = p \text{ and } p \ge 1\}$.
- 4. For the grammar $S \to aCa$, $C \to aCa/b$, find L(G).
- 5. Explain the components of a TM with a neat diagram.
- 6. Differentiate between PDA Vs TM.
- 7. Mention any two undecidable problems.
- 8. Is the problem of type 0 grammar unsolvable? Justify your answer.
- 9. Prove that P is closed under complement.
- 10. Give two applications of NP class problems.

PART B - (5 × 16 = 80 marks)

11.	(a)	(i)	Define regular expression and regular languages. What langu	age is
			represented by the regular expression $(c * (a \cup (bc*))*)?$	(8)

(ii) What are the properties that are closed under regular languages? Give examples of each. (8)

Or

- (b) Construct a non-deterministic finite automata accepting the regular expression $(ab \cup aab \cup aba) * a$. Design an equivalent deterministic finite automata that accepts the regular expression and trace for a string w = aababaa.
- 12. (a) Prove any four closure properties of context free grammar.

Or

- (b) (i) Prove that L is $L(M_2)$ for some PDA M_2 iff L is $N(M_1)$ for some PDA M_1 .
 - (ii) Construct a PDA by empty stack for $L = \{a^n b^n / n \ge 1\}$.
- 13. (a) (i) Show that the single tape Turing machine can be simulated to multitape Turing machine in solving any problem. Illustrate with an example. (8)
 - (ii) Define an unrestricted grammar. Construct a unrestricted grammar for the language $\{a^n b^m c^n d^m \mid n \neq m \text{ and } n, m \geq 1\}$. (8)

Or

- (b) Elaborate on recursive and recursively enumerable language, related to concepts, relationships and properties.
- 14. (a) (i) Show that halting problem of TM is undecidable. (8)
 - (ii) State and prove the Rice theorem. (8)

 \mathbf{Or}

(b) Explain the universal Turing machine as an undecidable problem.

- 15. (a) State and explain any one of the following NP-Complete problem.
 - (i) Travelling salesman problem

.≠

(ii) Subgraph isomorphism problem.

Or

- (b) (i) Write the characteristic features of P-completeness. Explain with an example. (12)
 - (ii) How is time complexity and space complexity defined in NP and P problems? (4)