The try

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 95310

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Software Engineering

ESE 055 — THEORY OF COMPUTATION

(Regulations 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Define a language and their basic set of operations.
- 2. Construct an deterministic finite automata for the regular expression (aUb)*a.
- 3. Construct a Left most derivation and parse tree for the string w = aaabb derived from the following grammar.

 $S \to AB/aaB$ $A \to aA/aB$ $B \to b$.

- 4. Define pushdown automata. State the relation between PDA and context free grammar.
- Design a turing machine that scans to the right until it finds two consecutive a's and then halts. The alphabets are $\{a,b,\lfloor,\Delta\}$.
- 6. Derive a grammar for the language $\{0^n1^n2^n : n \ge 1\}$.
- 7. Prove that if L1 is not recursive and there is a reduction from L1 to L2 then L2 is also not recursive.
- 8. Give two examples for undecidable problems.
- 9. When is a turing machine said to be polynomially bounded?
- 10. Show that P is closed under intersection and concatenation.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Design a deterministic and non deterministic finite automata which accepts the stirngs defined over alphabet {0, l} with regular expression (00 U 11)* 011. Trace for a string of acceptance and state the limitation in NFA.
 - (ii) Prove the language $L = \{ nimi : i \ge 1 \}$ is not a regular set.. (6)

			generate an equivalent deterministic finite automata for the given = (a U b)*a b(a U b)*. Trace for the string w = baba. (16)
12.	(a)	alph	gn a pushdown automata for the language of palindrome with abets {0, l, 2} with a middle element I. Trace for the string 02120.
			\mathbf{Or}
	(b)	(i)	Find the grammar that generates the following language (8)
			$L(G) = \left\{ a^m b^n a^n b^m \middle n \ge 0 \right\}$
		(ii)	Consider the $CFGA \rightarrow aAB bBCA \rightarrow BA aB \rightarrow cCC bC \rightarrow AB c$.
			Describe a pushdown automata for the same. (8)
13.	(a)	(i)	Elaborate on computing with turing machines and show that the initial function are Turing computable. (8)
		(ii)	Explain the non deterministic turing machine and its significance with an example. (8)
			Or
	(b)	(i)	Describe in detail the random access turing machine. (10)
		(ii)	Discuss the power and configuration of multitape and multidimensional Turing machine. (6)
14 .	(a)	(i)	Design a universal turing machine and discuss on the enumeration sets. (8)
		(ii)	Discuss with two problems / applications the concept of undecidability problems about Turing machine. (8)
			\mathbf{Or}
	(b)	(i)	What is halting problem? Why halting problem is considered to be undecidable problem? (8)
		(ii)	Distinguish recursive and recursively enumerable languages and state any two theorems associated with the two languages. (8)
15 .	(a)	Exp	lain in detail independent set and SATISFIABILITY problem. (16)
			Or
	(b)	-	lain in detail the P and NP problems. Explain where a traveling sman problem is applicable.

Construct a non deterministic finite automata for the regular expression

(b)