

Reg. No.:	
-----------	--

Question Paper Code: 95389

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Computer Technology

XCS 232/10677 SW 302 — NUMERICAL METHODS

(Common to 5 Year M.Sc. Information Tech. & 5 Year M.Sc. Software Engineering)

(Regulations 2003/2007/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. State the basic principle of bisection method.
- 2. State the order of convergence of an iterative process.
- 3. By Gauss-Elimination method, solve x + y = 2, 2x + 3y = 5.
- 4. Compare Gauss Jacobi and Gauss-Seidal methods.
- 5. Can you use Lagrange's interpolation formula when the intervals are equal?
- 6. State Stirling's formula for interpolation.
- 7. State the Newton's Backward difference formula to compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the tabulated value $x = x_n$.
- 8. State the formula for numerical integration by Simpson's $\frac{3}{8}$ th rule.
- 9. Derive Taylor's series formula in solving $\frac{dy}{dx} = f(x, y)$ with the initial condition $y(x_0) = y_0$.
- 10. Compare Taylor's series method and Runge-Kutta method.

$PART B - (5 \times 16 = 80 \text{ marks})$	

	TART D — (0 × 10 - 00 marks)			
correct to 3 decima (8	Find a real root of the equation $\cos x = 3x - 1$ coplaces by using iteration method.	a) (i)	11. (a)	11
. (8	Find cube root of 24, by Newton's method.	(ii)	•	•
	Or	•		
correct to 3 decima (8	Find a root of the equation $x^3 - 4x - 9 = 0$ coplaces by using the bisection method.	b) (i)	(b)	
e root by the method (8	Solve the equation $2x - 3\sin x = 5$ for a positive of false position.	(ii)		
z = 4, $7x + y - 5z = 8$ (16)	the method of transularization solve $5x-2y+z$ 3x+7y+4z=10.		12. (a)	12
	Or			
of $10x + y + z = 12$ (8)	By Gauss-Jordan method, find the solution $2x+10+z=13$, $x+y+5z=7$.	b) (i)	(b)	
z = 14, $x + 5y - z = 10$ (8)	Using Gauss-Seidal method, solve $4x + 2y + z = $ and $x + y + 8z = 20$.	(ii)		
m the following data (8	Find the values of y at $x = 21$ and $x = 28$ from using Newton's formula. $x: 20 23 26 29$ $y: 0.3420 0.3907 0.4384 0.4848$	a) (i)	13. (a)	18
nd the value of $f(8)$	Using Newton's divided difference formula, find from the following table: $x:$ 4 5 7 10 11 13 $f(x):$ 48 100 294 900 1210 2028	(ii)		
	Or			
(8	Using Lagrange's method, find $f(6)$ given	b) (i)	(b)	
	x: 2 5 7 10 12 $f(x):$ 18 180 448 1210 2028			
irling's formula. (8	Find $y(1.22)$ from the following table, using Stir	(ii)	•	

95389

x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

 $y: 0.8415 \ 0.8912 \ 0.9320 \ 0.9636 \ 0.9855 \ 0.9975 \ 0.9996 \ 0.9939 \ 0.9739$

14.	(a)	(i)	Given the following data, find $y'(6)$							(8)
		7.	\boldsymbol{x} :	0	2	3	4	7	9	
			y :	4	26	58	112	466	922	. •

(ii) By dividing the range into ten equal parts, evaluate $\int_{0}^{\pi} \sin x \, dx$ by Trapezoidal and Simpson's rule. (8)

Or

(b) (i) The table given below reveals the velocity v of a body during the time t specified. Find its acceleration at t=1.1 (8)

 $t: 1.0 \quad 1.1 \quad 1.2 \quad 1.3 \quad 1.4$ $v: 43.1 \quad 47.7 \quad 52.1 \quad 56.4 \quad 60.8$

- (ii) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by Trapezoidal rule and Simpson's 1/3 rule, by dividing into 6 equal parts. (8)
- 15. (a) (i) Using Taylor series method, find y at x = 0.1 if $y' = 2y + 3e^x$, y(0) = 0.
 - (ii) Solve $y' = \frac{y-x}{y+x}$, y(0) = 1 at x = 0.1 by Runge Kutta method. (8)

 \mathbf{Or}

- (b) (i) Using Euler's method, find y(0.2), y(0.4), y(0.6), y(0.8) and y(1) if y' = x + y, y(0) = 0.
 - (ii) Solve y''=xy, y(0)=-1, y(1)=2, by finite difference method, dividing the interval into four equal parts. (8)