

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 21778

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Mechanical Engineering

MA 2266/MA 42/MA 1254/080120014/10177 SN 401 — STATISTICS AND NUMERICAL METHODS

(Common to Automobile Engineering and Production Engineering)

(Regulations 2008/2010)

(Common to PTMA 2266 – Statistics and Numerical Methods for B.E. (Part-Time) Second Semester – Production Engineering – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Statistical tables may be permitted.

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Write any two applications of ψ^2 -test.
- 2. What are Type-I and Type-II errors?
- 3. Present the ANOVA table for a completely randomized design.
- 4. Explain 2² factorial design.
- 5. Compare Gauss-Jordan method with Gauss-Seidel method.
- 6. Write the formula and order of convergence for Newton-Raphson method.
- 7. Construct the Newton's forward difference table for $y = x^2 3x + 1$, x = 0 to 4.
- 8. Write the difference between Trapezoidal and Simpson's $\frac{1}{3}^{rd}$ rule.
- 9. Using Euler's method find y(0.1) for y'=x+y, y(0)=1.
- 10. Classify the equation: $f_{xx} 2f_{xy} + f_{yy} = 0$.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Do the following sample variances vary significantly at 5% level? (8) Sample I: 39 41 43 41 45 39

Sample II: 40 42 40 44 39 38 40

(ii) Test whether the following attributes are independent at 5% level. (8) Vaccination

Small pox		Given	Not given	Total
· · · · · · · · · · · · · · · · · · ·	Attacked	35	333	368
· •	Not attacked	308	806	1114
	Total	343	1139	1482

Or

(b) (i) Test if the difference in means is significant for the following at 5% level. (8)

$$\overline{x}_1 = 1190$$
, $\overline{x}_2 = 1230$, $S_1 = 90$, $S_2 = 120$, $n_1 = 100$, $n_2 = 75$.

(ii) Is there any significant difference in means, in the following at 5% level? (8)

$$\overline{x}_1 = 107$$
, $\overline{x}_2 = 112$, $S_1 = 10$, $S_2 = 8$, $n_1 = 16$, $n_2 = 14$.

- 12. (a) A farmer wishes to test the effects of 4 different fertilizers (A, B, C, D) on the yield of wheat. In order to eliminate sources of error due to variability in soil fertility, he uses the fertilizers in a latin square arrangement as shown in the following table, where the number indicated yields in busheds/unit area. Perform an analysis of variance to determine whether there is a difference between the fertilizers at significant levels of
 - (i) .05

A18 C21 D25 B11 D22 B12 A15 C19 B15 A20 C23 D24 C22 D21 B10 A17

O

- (b) Five doctors each test five treatments for a certain disease and observe the number of days each patient takes to recover. Discuss the difference between
 - (i) The doctors and
 - (ii) The treatments for the following data at 5% level. (16)

Treatments

Doctors	1	2	3	4	5
. 1	10	14	23	18	20
2	11	15	24	17	21
3	9	12	20	16	19
4	8	13	17	17	20
5	12	15	19	15	22

Find the inverse of the matrix, by Gauss elimination.

(ii) Using Gauss-Seidel method, solve:
$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25.$$
 (8)

- (b) Find the eigen value of $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$ using power method. (16)
- Using Newton's divided difference formula find the value of f(8) for the following: f(x): 48 100 294 900 1210 2028
 - (ii) Evaluate $\int e^x dx$ using Simpson's $\frac{1}{3}$ rule correct to five decimal places, taking h = .1. Verify your answer.

- (i) Find $\left(\frac{dy}{dx}\right)_{1.1}$ and $\left(\frac{d^2y}{dx^2}\right)_{1.1}$ for the following: 1.3 1.2 y: 7.989 8.403 8.781 9.129 9.451 9.750 10.031
 - Using Lagrange's method find y(10) from the following: (ii) y: 12 13 14 16
- Use Runge-Kutta method of order 4 to find y at x = .1, .2, .3 given that $y' = x + y^2, y(0) = 1.$ (16)

Given: $y'=x^2+y^2-2$, y(0)=1, use Taylor's method to find y at x = -0.1, 0.1, 0.2 and Milne's method to find y at x = 0.3. (16)