

Reg. No.:						•			
_	 L.,,	<u></u>	<u> </u>	 <u>. </u>	·		 	<u></u>	

Question Paper Code: 61476

M.E. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

First Semester

Applied Electronics

MA 9217/MA 908/UMA 9125 — APPLIED MATHEMATICS FOR ELECTRONICS ENGINEERS

(Common to M.E. VLSI Design/M.E. VLSI Design and Embedded Systems/M.E. Bio-Medical Engineering/M.E. Medical Electronics)

(Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Write the conditional and unconditional fuzzy propositions.
- 2. Define quasicontradiction.
- 3. Find the QR factorization for the matrix $A = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$.
- 4. Write down the objective of least square method.
- 5. A CRV X that can assume any value between x = 2 and x = 5 has a density function given by f(x) = k(1+x). Find P(X < 4).
- 6. State and prove the memoryless property of Exponential distribution.
- 7. Define dynamic programming.
- 8. Mention any two applications of dynamic programming.
- 9. Write Little's formulae in queueing theory.
- 10. Give Kendal's notation for representing queueing models.

PART B - (5 × 16 = 80 marks)

11. (a) Give an example from daily life of each type of fuzzy proposition and express the proposition in its canonical form. (16)

Or

- (b) Explain about proposition that contain fuzzy quantifiers of the first kind with example. (16)
- 12. (a) Construct QR decomposition for the matrix. (16)

$$A = egin{pmatrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{pmatrix}$$

Or

(b) Construct a singular value decomposition for the matrix

$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6 \end{pmatrix}. \tag{16}$$

- 13. (a) (i) The Cumulative distribution function of a random variable X is $F(X) = 1 (1 + x)e^{-x}$, x > 0. Find the probability density function of X, mean and variance. (10)
 - (ii) Prove that the sum of two independent Poisson variates is a Poisson variate. (6)

Or

- (b) (i) The number of Personal Computer (PC) sold daily at a computer world is uniformly distributed with a minimum of 2000 PC and a maximum of 5000 PCs. Find.
 - (1) The probability that daily sales will fall between 2500 and 3000 PC.
 - (2) What is the probability that the computer world will sell at least 4000 PC's?
 - (3) What is the probability that the computer world will exactly sell 2500 PC's? (10)
 - (ii) The saving bank account of a customer showed an average of Rs. 150 and a standard deviation of Rs. 50. Assuming that the account balances are normally distributed
 - (1) What percentage of account is over Rs. 200?
 - (2) What percentage of account is between Rs. 120 and Rs. 170?
 - (3) What percentage of account is less than Rs.75? (6)

14. (a) Solve the LPP by dynamic programming:

(16)

Maximize $Z = 50x_1 + 100x_2$,

subject to:

$$10x_1 + 5x_2 \le 2500$$

$$4x_1 + 10x_2 \le 2000$$

$$x_1 + \frac{3}{2}x_2 \le 450$$

$$x_1,x_2\geq 0.$$

Or

(b) Solve the following problem:

(16)

Minimize
$$Z = y_1^2 + y_2^2 + + y_n$$

subject to $y_1y_2....y_n = b$.

- 15. (a) A one-person barber shop has six chairs to accommodate people waiting for a hair cut. Assume customers who arrive when all six chairs are full leave without entering the barber shop. Customers arrive at the average rate of 3/hr and spend an average of 15 mm in the barber chair.
 - (i) What is the probability that a customer can get directly into the barber chair upon arrival?
 - (ii) What percentage of time is the barber idle?
 - (iii) What is the expected number of customers waiting for hair cut?
 - (iv) What is the effective arrival rate?
 - (v) How much time can a customer expect to spend in the barber shop?
 - (vi) What fraction of potential customers are turned away?

Or

- (b) A car servicing station has two bags where service can be offered simultaneously. Due to space limitation, only four cars are accepted for servicing. The arrival pattern is Poisson with a mean of one car every minute during the peak hours. The service time is exponential with mean 6 minutes. Find
 - (i) The average number of cars in the service station
 - (ii) The average number of cars in the system during the peak hours
 - (iii) The average waiting time of a car spends in the system
 - (iv) The average number of cars per hour that cannot enter the station because of full capacity.