	I			 			
Reg. No.:					· .		
			·			·	

Question Paper Code: 21757

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015

Third Semester

Information Technology

IT 2201/IT 33/080250005/10144 IT 304 — DATA STRUCTURES AND ALGORITHMS

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. What is an Abstract Data 'type?
- 2. What are cursor-based linked lists?
- 3. What are general trees? Give an example.
- 4. State the properties of a binary heap
- 5. What is meant by rehashing?
- 6. What is dynamic equivalence problem?
- 7. Define a connected graph.
- 8. What arc articulation points?
- 9. Compute the average case complexity of linear search algorithm.
- 10. Define NP complete and NP hard.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Formulate algorithms to implement Queue ADT using array. (10)
 - (ii) What are the advantages of circular linked list over linked list? (6)

- (b) (i) Write algorithms to insert a node in a singly linked list. (10)
 - (ii) Consider the following arithmetic infix expression Q. (6) Q = A + (B * C (D/E F) * G) * H Convert infix expression Q into equivalent post expression using
- 12. (a) (i) Formulate algorithms to perform insertion and deletion in a Binary Search Tree. (10)

stack.

- (ii) What are the three tree traversals. Give an example to explain it.(6)

 Or
- (b) (i) Write the algorithm to perform insertion into an AVL tree. (10)
 - (ii) For the following input list of numbers (6) 14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5 Find the binary search tree.
- 13. (a) (i) Explain about the Smart Union algorithms with suitable example. (10)
 - (ii) Discuss about improving the find() operation using path compression.

 (6)
 - (b) (i) Explain about Open addressing hashing schemes. (10)
 - (ii) Explain in brief, the purpose of Extendible hashing. (6)
- 14. (a) (i) Write Kruskal algorithm to find a minimum spanning tree of a Graph. (10)
 - (ii) What is linked representation of a graph? What are its advantages over other representations of graph. (6)

(b) Write Dijkstra's algorithm and find shortest path taking V_0 as starting node in the Graph. (16)

		•			
	15.	(a)	(i)	Explain the Greedy method in detail with example.	(10)
		•	(ii)	What is Divide and Conquer strategy. Why recursion is most for divide and conquers?	ost suited (6)
•				Or	
	·	(b)	(i)	Explain the basic principle of dynamic programming usin example.	g a simple (10)
	-		(ii)	Describe in brief, the Backtracking technique.	(6)

•

•

-