

i	1		·	1	
Reg. No.:					
•	<u> </u>	[<u> </u>	 1 L .	

Question Paper Code: 95403

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Information Technology

XCS 355/10677 SW 503 — DESIGN AND ANALYSIS OF ALGORITHMS

(Common to 5 Year M.Sc. Software Engineering and M.Sc. Computer Technology)

(Regulations 2003/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. List the criteria that all algorithms must satisfy.
- 2. Define searching.
- 3. What is an optimal solution?
- 4. Distinguish greedy and dynamic methods.
- 5. Write pseudocode for post order traversal of binary trees.
- 6. What is adjacency list for a graph? Give an example.
- 7. List the important features of dynamic trees with an example.
- 8. What is a Hamiltonian cycle?
- 9. What is meant by non-deterministic algorithm?
- 10. Define Cooke's theorem.

PART B — $(5 \times 16 = 80 \text{ marks})$

the recurrence equation.

(ii)

Write a recursive algorithm for the Tower of Hanoi puzzle. Obtain

Explain quick sort with an example. Give its time complexity.

(8)

(8)

	•		Or.						
	(b)	_	lain the working of binary search algorithm and merge sort algo g divide-and-conquer with an example.	rithm					
12 .	(a)	-	plain how the greedy method finds an optimal solution for knapsackoblem.						
			\mathbf{Or}						
	(b)	Expl	lain the procedure to solve all pairs shortest paths problem.						
13.	(a)	Desc	cribe the graph traversal techniques in detail. Give examples.	•					
			\mathbf{Or}						
-	(b)	Compare the following:							
		(i)	Graphs and trees.						
		(ii)	Spanning tree and binary tree.						
		(iii)	Graph and connected component.						
		(iv)	Binary search tree and binary tree. (4×4)	4 = 16)					
14.	(a)	(i)	Explain 8-Queens problem. How can it be solved in backtramethod?	acking (8)					
		(ii)	Give an example for FIFO branch and bound solution for knapsack problem.	or 0/1 (8)					
			Or						
	(b)	(i)	Define graph coloring. What is the optimal solution for it? Ho it be obtained in backtracking method?	ow can (10)					
		(ii)	Give the control abstraction for LC search.	(6)					
			2	95403					

15. (a) What are AND/OR graphs? Differentiate it from trees. How the problems are reduced using AND/OR graphs? Give example.

Or

(b) What is DAG? Explain how the arithmetic expressions are represented using DAGs. Explain the code generation for the corresponding DAGs.