

		, 										<i>i</i>
					· '	l i				i '		
T3 3.7		,										
Reg. No.:			1		}	i ' i	į					
1162.110							•		!	1		1
0		•	1			Ł I	1					4

Question Paper Code: 21761

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Information Technology

IT 2302/IT 52 - INFORMATION THEORY AND CODING

(Regulations 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Consider a discrete binary source that emits a sequence of statistically independent symbols. The output is either 0 with Probability p or 1 with a Probability 1-p. Define the entropy of this binary source. Also draw the plot of the Binary Entropy function versus p.
- 2. Define a prefix code.
- 3. Give the logic behind Lempel-Ziv Universal Coding.
- 4. Draw the Huffman tree for the following encoding.

A = 1

 $\mathbf{B} = \mathbf{01}$

C = 001

D = 000

- 5. Give the usage of Graphics Interchange Format (GIF) in Internet.
- 6. What are the five main stages associated with lossy sequential mode?
- 7. How is a burst error of length k can be represented?
- 8. Suppose H is a parity check matrix of an (n,k) code, then for any vector $v \varepsilon GF(q)^n$, give the syndrome of v.
- 9. Define a Tree code.
- 10. What are the advantages of viterbi decoding?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	List the steps involved in Huffman coding algorithm (6	6)				
		(ii)	Consider a DMS with seven Possible Symbols x_i , $i = 1,2,,7$ and the corresponding probabilities $P_1 = 0.37$, $P_2 = 0.33$, $P_3 = 0.16$, $P_4 = 0.07$					
			$P_5 = 0.04$, $P_6 = 0.02$ and $P_7 = 0.01$. Give the Entropy of the source					
		•	and calculate the average number of binary digits per Symbol. (10					
			Or	•				
	(b)	band	sider a Gaussian channel that is limited both in power an lwidth. Explore the limits of a communication System under thes traints.	e				
12 .	(a)	Disc	uss various types of Huffman Coding with Suitable example. (16	3)				
			Or					
	(b)	_	n a neat block diagram explain Linear Predictive Coding Signa oder and Decoder.					
13.	(a)	Expl	ain in detail about the various types of MPEG standards. (16	S)				
			Or					
÷	(b)	Expl	ain in detail about the standard H.261.	i)				
14.	(a)	(i)	Prove that, for a linear code, the minimum distance is equal to the minimum weight of the Code. (8					
		(ii)	Write short notes on matrix description of Linear Block Codes. (8	()				
			\mathbf{Or}					
	(b)	(i)	Write short notes on CRC Codes. (8	;)				
		(ii)	Discuss about various circuit elements used to implement cyclicodes. (8					
15.	(a)	Explain the construction of Trellis diagram and encoding using it with suitable examples. (16)						
			\mathbf{Or}					
	(b)	Disc	uss the various issues of Turbo Coding technique. (16)				