

Reg. No.:									
-----------	--	--	--	--	--	--	--	--	--

Question Paper Code: 21688

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Seventh Semester

Instrumentation and Control Engineering

IC 2401/IC 71/10133 IC 701 – DIGITAL CONTROL SYSTEM

(Common to Eighth Semester Electronics and Instrumentation Engineering)

(Also common to IC 71 Digital Control System for Electronics and Instrumentation Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Draw the functional block diagram of digital control system.
- 2. Differentiate discrete time signal and digital signal.
- 3. State Shanon's sampling theorem.
- 4. What is the transfer function of zero order hold?
- 5. Find the Z transform of exponential function $f(t) = e^{-at}$.
- 6. Define Bounded Input and Bounded Output Stability.
- 7. What is the characteristic equation of a system represented in state space form? With $A = \begin{bmatrix} -1 & 1 \\ -0.5 & 0.2 \end{bmatrix}$; $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$; $D = \begin{bmatrix} 1 & 0 \end{bmatrix}$;
- 8. Define observability of a system.
- 9. What is the effect of PI controller in a system?
- 10. Draw the dead beat response of a discrete-data system to a unit-step input.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Explain briefly about configurations of digital control system and sampled data system variables.

Or

- (b) State and explain the advantages of digital control system with an example.
- 12. (a) (i) Explain the operation of ideal sampler with input and output signals. (8)
 - (ii) Describe reconstruction of sampled signal with first order hold. (8)
 Or
 - (b) Briefly explain about Frequency Prewarping with an example.
- 13. (a) (i) Relate s and z domain. (4)
 - (ii) Find the z transform of the function $f(k) = (0.1)^k u_s(k) + 0.5k(0.1)^k u_s(k).$ (12)

Or

- (b) (i) Determine the values of K for the system with characteristic equation $z^4 + 0.2z^3 0.25z^2 0.05z + K = 0$, to be asymptotically stable. (8)
 - (ii) Briefly discuss about steady state error for step input and ramp input applied to Type 0, Type 1 and higher type systems. (8)
- 14. (a) (i) Convert the transfer function $\frac{1.65(z + 0.1)}{z^3 + 0.7z^2 + 0.11z + 0.005}$ into state space representation. (8)
 - (ii) Find the state transition equation of the systems with initial states at x(0) has $A = \begin{bmatrix} 0 & 1 \\ 0.5 & 0.3 \end{bmatrix}$; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; (8)

·Or

- (b) (i) Illustrate Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$. (8)
 - (ii) Find the state controllability of a discrete data control system described by state equation (8)

$$x(k + 1) = Ax(k) + Bu(k), A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 2 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

15. (a) Transfer function of controlled process is $G(z) = \frac{1.338(z + 0.7531)}{z^2 - 0.9398z + 0.4347}$, design a PID controller such that zeros of PID controller cancel the poles of G(z) and the ramp error constant Kv = 1.

Or

- (b) (i) Briefly explain about state observers. (6)
 - (ii) Find the state feedback matrix G such that the eigen values of A-BG are at 0 and 0.3. $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; (10)