

Reg. No.:						
	<u></u>	<u></u>	<u></u>	 	<u> </u>	

Question Paper Code: 21396

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Sixth Semester

Electronics and Instrumentation Engineering

CS 2364/EI 64/10133 EE 703/10144 CSE 26 — EMBEDDED SYSTEM

(Common to Instrumentation and Control Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What are the functional requirements of an Embedded System?
- 2. Mention the IO standard interface.
- 3. What is the use of a MACRO function?
- 4. Mention the flags available for queue.
- 5. Give the limitations of polling technique.
- 6. What are the three ways of communication for a device?
- 7. Define RTOS.
- 8. Define Semaphore.
- 9. Name some application for the VxWorks RTOS.
- 10. Define Deadlock.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Explain the various forms of memory and the functions assigned to them.

Or

(b) Explain the components of exemplary embedded systems.

•	12.	(a)	(i) Explain the signal using a transfer of byte when using the 12C bus and also the format of bits at the 12C bus with diagram.
			(ii) Explain the internal serial communication devices.
	•	•	\mathbf{Or}
		(b)	Explain the serial communication using 12C, CAN, USB in detail.
	13.	(a)	Explain the function pointers, function queues and ISR queues.
		-	. Or
		(b)	(i) Explain the optimization of memory codes. (8)
			(ii) Explain the Embedded programming in C++. (8)
	14.	(a)	Explain how interrupt routines are handled in embedded system.
•			Or
		(b)	Explain the state transition diagram of RTOS.
	15.	(a)	Write in detail about MUCOS and it's features with a suitable example.
		-	\mathbf{Or}
•		(b)	How does an RTOS semaphore protect data? Explain by giving example.