

Reg. No.:												

Question Paper Code: 21530

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Electronics and Instrumentation Engineering

EI 2254/EI 46/ME 1260/080300011/10133 EI 406 — APPLIED THERMODYNAMICS

(Common to Instrumentation and Control Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

(Use of steam tables, refrigeration tables, psychrometric charts and heat and mass transfer tables are permitted)

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What do you understand by path function and point function?
- 2. State carnot theorem.
- 3. Sketch the P-V and T-S diagram of otto cycle.
- 4. What is mean effective pressure?
- 5. List any four boiler mountings.
- 6. Distinguish an impulse and reaction turbine.
- 7. What are the advantages of multi-stage compression?
- 8. What do you mean by C.O.P of refrigerator? What is the relation between COP of pump and refrigerator?
- 9. State the Fourier's law of heat conduction?
- 10. Define shape factor.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) A gas undergoes a thermodynamic cycle consisting of the following processes:
 - (i) Process 1-2: constant pressure with p=1.4 bar to $V_1=0.028$ m³, $W_{12}=690$ kJ.
 - (ii) Process 2-3: compression with pV = constant, $W_{23}=0$, $U_3=U_2$.
 - (iii) Process 3-1: constant volume $U_1-U_3=-26.4$ kJ. There are no significant changes in KE and PE.
 - (1) Sketch the cycle on a p-v diagram
 - (2) Calculate the net work for the cycle in kJ.
 - (3) Calculate the heat transfer for process 1-2.
 - (4) Show that $\Sigma Q_{cycle} = \Sigma W_{cycle}$.

Or

- (b) What is a steady flow process? Derive the steady flow Energy Equation.
- 12. (a) In a dual cycle compression cycle the maximum pressure is 56 bar. At the beginning of compression the pressure and temperature is 198 bar and 28.6°C respectively. The compression ratio is 14 and heat supplied to the cycle is 1265 KJ/Kg. Find the cut off ratio, the expansion ratio and the efficiency.

Or

- (b) With the neat sketches, explain the working principle of four stroke petrol engine.
- 13. (a) The steam at 15 bar and 300°C is supplied to an engine working on Rankine cycle. The exhaust takes place at 0.8 bar. Calculate
 - (i) the condition of steam after isentropic expansion,
 - (ii) Rankine cycle efficiency,
 - (iii) mean effective pressure,
 - (iv) the ideal steam consumption per kw hour.

Or

(b) Describe the working principle of a steam power plant with a neat layout.

14. (a) Explain the construction and working of centrifugal compressor.

Or

- (b) What is air conditioning? Discuss in detail the types of Air conditioning systems.
- 15. (a) A steel pipe Line (k = 50 W/m/k) of inner diameter 100mm and outer diameter 110 mm is to be covered with two layers of insulation each having a thickness of 50 mm. the thermal conductivity of the first insulation material is 0.12 W/m/k. Calculate the heat loss per meter length of pipe and the interface temperature between the two layers of insulation when the temperature of the inside surface is 250°C and that of the outside surface of insulation is 50°C.

Or

(b) Calculate the convective heat loss from a radiator 0.5 m wide and 1 m high maintained at a temperature of 84 °C in a room at 20 °C. Treat the radiator as vertical plate.