

Reg. No.:

Question Paper Code: 21529

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Electronics and Instrumentation Engineering

EI 2253/EI 43/080300014/10133 EE 406 — DIGITAL LOGIC CIRCUITS

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Convert decimal 65,225 to its hexadecimal and binary equivalents.
- 2. Simplify the given expression Y = (A+B)(A+C')(B'+C').
- 3. Draw the logic diagram of a serial adder.
- 4. Implement Y = AB + C'D' with NAND gates.
- 5. How could you change an edge-triggered RS flip-flop into an edge-triggered JK flip-flop?
- 6. What is a ring counter?
- 7. What is an asynchronous sequential circuit?
- 8. Give the significance of state assignment.
- 9. Define the terms: Fan in, Fan out.
- 10. What is refreshing? How it is done?

PART B - (5 × 16 = 80 marks)

11. (a) Simplify the given Boolean function using K-Map.

(i)
$$F(A,B,C,D)=\sum m$$
 (1, 2, 3, 5, 7, 9, 10, 11, 13, 15). (8)

(ii)
$$F(W,X,Y,Z)=WX'Y+WZ+XZ'+YZ'+WY'+WX'$$
. (8)

Or

(b) Using Quine McCluskey method, simplify the given function.

$$F(A,B,C,D) = \sum m (2, 3, 7, 9,11, 13) + \sum d(1, 10, 15).$$
 (16)

- 12. (a) (i) Design a four bit BCD to excess 3 code converter and draw the logic diagram. (8)
 - (ii) Realize $F(a, b, c, d) = \sum (1, 4, 6, 7, 8, 9, 10, 11, 15)$ using 4- to-1 MUX. (8)

Or

- (b) (i) What is a priority encoder? Design a 4-bit priority encoder. (8)
 - (ii) Design a four hit parallel adder and draw the logic diagram. (8)
- 13. (a) Design a sequential circuit with four JK Flip-flops ABCD. The next states of B, C, D are equal to the present states of A, B, C. The next state of A is equal to the X-OR of the present states of C and D. (16)

. Or

- (b) (i) Design a 4-bit bidirectional shift register. (8)
 - (ii) Design a synchronous counter using JK FF to count the following sequence 7,4, 3,1, 5, 0, 7..... (8)
- 14. (a) Design an asynchronous sequential circuit that has two inputs X_1 , X_2 and one output Z. When $X_1 = 0$, the output Z is 0. The first change in X_2 occurs while X_1 is 1 will cause output Z to be 1. The output Z will remain 1 until X_1 returns to 0. (16)

Or

(b) An asynchronous sequential circuit has two internal states and one output. The excitation and output function describing the circuit are as follows.

$$Y_1 = x_1x_2 + x_1y_2 + x_2y_1$$

 $Y_2 = x_2 + x_1y_1y_2 + x_1y_1$
 $Z = x_2 + y_1$

Draw the logic diagram of the circuit. Obtain the state table, transition table and output map. (16)

15 .	(a)	(i)	Explain the operation of two input TTL NAND gate	with Totem-
•		. •	pole output.	(10)
		(ii)	Compare PROM, EPROM and EEPROM.	(6)
			Or	
· •	(b)	(i)	Explain the architecture of FPGA.	(8)
	•	(ii)	Describe the characteristics of CMOS family.	(8)

•