Knc	
	Fr
6/1/16	•

Reg. No.:								
-	<u> j</u>	i		l				

Question Paper Code: 21485

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Seventh Semester

Electrical and Electronics Engineering

EE 2025/EE 702 — INTELLIGENT CONTROL

(Regulations 2008)

(Common to PTEE 2025 – Intelligent control for B.E. (Part-Time) Sixth Semester EEE – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What are the three basic approaches to intelligent control?
- 2. When to go for Expert system based control?
- 3. Write down the parameters to be tuned in an artificial neural network.
- 4. Draw the perceptron neural network model.
- 5. What is mutation in GA?
- 6. Write pseudo-code for ACO.
- 7. Distinguish between classical set theory and fuzzy set theory.
- 8. List the de-fuzzification methods.
- 9. Mention any two power system problems for which GA can be applied.
- 10. List various activation functions supported by MATLAB NN toolbox.

PART B —	$(5 \times$	16 =	80	marks
TWILD -	$(\mathbf{O} \wedge$	10 -	QU	marks

11. (a) With neat diagram explain architecture of intelligent control system. (16)

Or

(b) (i) Explain the applications of expert system. (8)

(ii) Write the theory of rule-based system. (8)

12. (a) Using McCulloh-Pittts neuron model, design a neural network for 3-input OR function. (16)

Or

(b) Classify the two dimensional input pattern shown in Fig. 1 using perceptron network. The symbol " \mathbb{R} " indicates the data representation to be +1 and " \mathbb{C} " indicates data to be -1.

The Patterns are I & F. For pattern I, the target is +1 and for F, the target is -1. (16)

 $\binom{R}{R}$

(c) (R) (c)

 $\binom{R}{C}$

Pattern "I"

Pattern "F"

Fig. 1

13. (a) Perform two generations of simple binary coded genetic algorithm to solve for the following optimization problem.

Max $f(x)=x^2+2x+3$; $0 \le x \le 32$

Where x is an integer.

Use population size is 4, single point crossover, binary mutation and Roulette wheel selection. (16)

Or

- (b) Explain the working of Tabu search technique with an example. (16)
- 14. (a) (i) Explain the concept of Gain scheduling in fuzzy controller with suitable diagram. (8)
 - (ii) Describe the architecture of a Mamdani type fuzzy logic controller and compare it with a conventional PID controller. (8)

Or

(b) Let the membership functions of two fuzzy numbers A and B defined as

$$\mu_{A}(x) = \begin{cases} 0, & x \le 7 \\ x - 7, & 7 \le x \le 8 \\ -x + 9, & 8 \le x \le 9 \\ 0, & x \ge 9 \end{cases} \qquad \mu_{B}(x) = \begin{cases} 0, & x \le 3 \\ x - 3, & 3 \le x \le 4 \\ -x + 5, & 4 \le x \le 5 \\ 0, & x \ge 5 \end{cases}$$

Find the multiplication and division of two fuzzy numbers using α -cut method. (16)

15. (a) Explain the stability analysis method for Fuzzy control systems controlling nonlinear processes. (16)

Or

(b) Develop a fuzzy controller to fill a water tank which is empty using a ON-OFF controller and with a DC motor. Assume suitable data wherever necessary. (16)