

	1	T -		 		
Reg. No.:		<u>.</u> :				

Question Paper Code: 21452

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Electronics and Communication Engineering

EC 2301/EC 51 — DIGITAL COMMUNICATION

(Regulations 2008)

(Common to PTEC 2301 — Digital Communication for B.E. (Part-Time) Fourth Semester – Electronics and Communication Engineering – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. State any four techniques to improve the BER of a communication system.
- 2. Define basis set.
- 3. State Nyquist sampling theorem.
- 4. Why is quantisation needed in coding the samples?
- 5. Define constraint length of a convolutional code.
- 6. State any two requirements of line codes.
- 7. State the purpose of a matched filter.
- 8. Why is synchronisation necessary in a digital communication system?
- 9. Draw PSK and QPSK waveforms for the bit stream 01101100.
- 10. What are coherent and non-coherent receivers?

PART B — $(5 \times 16 = 80 \text{ marks})$

				•			
11.	(a)	(i)	Explain Gram-Schmidt orthogonalisation procedure.	(12)			
		(ii)	State and explain the dimensionality theorem.	(4)			
			Or				
	(b)	(i)	Explain the mathematical models of any three communic	cation (8)			
		(ii)	Define the terms:	(8)			
			(1) Half-power bandwidth				
			(2) Noise-equivalent bandwidth				
			(3) Absolute bandwidth				
			(4) Bounded power spectral density.				
12.	(a)	Exp	lain the sub-band coding and linear predictor coding.				
			\mathbf{Or}				
	(b)	(i)	Explain the PCM and derive the SNR expression.	(8)			
	•	(ii)	Explain the DM and derive the expression for quantisation noi	ise. (8)			
13.	(a)	Exp	lain the Viterbi algorithm assuming a suitable convolutional cod	ler.			
			Or				
	(b)	Deri	ive the power spectral density for the following line coding scher	nes:			
		(i) .	Bipolar NRZ				
		(ii)	Manchester NRZ				
14 .	(a)	(i)	Explain the bit synchronisation.	(10)			
		(ii)	Write notes on eye diagram.	(6)			
			Or				
	(b)	Disc	cuss Nyquist solutions to eliminate ISI.				
15 .	(a)	Derive the expressions for bit error probability of the following receivers :					
		(i)	Coherent ASK	(8)			
,		(ii)	Non-coherent FSK	(8)			
			Or				
	(b)		ive the expressions for the bit error probability of the followers:	owing			
		(i)	QPSK	(8)			
		(ii)	Coherent PSK	(8)			