| | • | i | | 1 | ĺ | | [| | | | | | |--|---|---|----------|---|---|------|---|--|--|---|-----|---| | $\mathbf{p}_{\alpha \sigma} \mathbf{N}_{\alpha}$ | | ł | ľ | i | ! | | | | | | | | | Reg. No.: | | ! | | | | [| ! | | | ! | | | | | | | <u> </u> | | | 1 | | | | 1 | | 1 | | | | | 1 | | l | I. I | | | | 1 | 1 1 | 4 | # Question Paper Code: 21441 ## B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015 #### Second Semester ### Electronics and Communication Engineering EC 2151/EC 25 /080290007/EE 1152/10144 EC 205 — ELECTRIC CIRCUITS AND ELECTRON DEVICES (Common to Computer Science and Engineering, Biomedical Engineering, Medical Electronics Engineering and Information Technology) (Regulations 2008/2010) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ - 1. State Kirchoff's law and voltage law. - 2. State Maximum power transfer theorem. - 3. Write the condition for resonance. - 4. A load consisting of 6Ω resistance and 8Ω inductive resistance draw a current of 20A when connected to a sinusoidal source. Determine the voltage and power in the load. - 5. What is the diffusion capacitance? - 6. Compare PN diode and Zener diode. - 7. What is avalanche breakdown? - 8. Compare N-channel and P-channel JFET. - 9. Draw the two transistor model of SCR. - 10. Write the application of UJT. ## PART B — $(5 \times 16 = 80 \text{ marks})$ 11. (a) (i) For the circuit shown in figure 11 (a)(i). Find the voltage across 20Ω resistor and current passing through it. (8) Fig. 11 (a)(i) (ii) In the circuit shown, determine the current through the 40Ω resistor and total current delivered by the battery. Use Kirchoff's laws. (8) Fig. 11 (a)(ii) Or (b) (i) Find the current through 6Ω resistance in circuit shown in figure 11 (b)(i) using Superposition theorem. (8) Fig. 11 (b)(i) (ii) Use Thevenin theorem find the current through $4+j10\Omega$ impedance for the Figure 11(b) (ii). (8) Fig. 11(b)(ii) - 12. (a) (i) A RLC series circuit consists of R=75Ω, L=125mH and C=200μF. The circuit is excited by a sinusoidal source of value 115V, 60Hz. Determine the voltage across various elements and calculate the current and power. - (ii) A series RC circuit has R=10Ω and C=0.1F, f= 50Hz. A constant voltage of 20V is applied to the circuit at t=0. Determine the voltage across the resistor and voltage across the capacitor. (6) Or - (b) (i) A series circuit has R=100Ω, L=50mH and C=100μF and is supplied with 200V, 50 Hz. Find the following impedance, current, power factor, power and voltage drops across each element. - (ii) Compare the series and parallel resonance circuit. (6) - 13. (a) With a neat sketch explain the construction, operation and characteristics of PN junction diode. (16) Or - (b) With a neat sketch explain the construction, operation and characteristics of Zener diode. (16) - 14. (a) Explain the construction and operation of NPN transistor and also discuss about its characteristics. (16) Or - (b) (i) Explain the construction and operation of Enhancement MOSFET. (12) - (ii) Compare BJT and FET. (4) 15. (a) Explain the construction and operation of Triac. List its advantages, disadvantages and its applications. (16) Or (b) Explain the following (8+8) - (i) Photoconductive cells - (ii) LCD