

				•				
1	 			2			4 /	
					1		4 7	
		•					4 7	
							4 7	
							4 7	
							4 7	
Reg. No.:							4 7	
							4 7	
				 1			4 /	
					h '		4 '	
	 				F	1 1	4 /	
			t		B .		4 '	
~			r	1	E .		4 /	t
			1	 				

Question Paper Code: 21376

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Computer Science and Engineering

CS 2202/CS 34/EC 1206 A/080230012/10144 CS 303 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Common to Information Technology)

(Regulations 2008/2010)

(Common to PTCS 2202 – Digital Principles and System Design for B.E. (Part-Time) Second Semester – CSE – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Convert the gray code (11011) to binary code.
- 2. Simplify the following expression with Boolean laws.

Y = ABC + AB'C + ABC'

- 3. What is the drawback of serial adder? For which applications are they preferred?
- 4. Distinguish between half adder and full adder.
- 5. Why a multiplexer is called a data selector?
- 6. How many address bits are needed to operate a 2k × 8 bit ROM frequency?
- 7. Distinguish between synchronous sequential circuits and asynchronous sequential circuits.
- 8. How many logic devices are required for a MOD-64 parallel counter?
- 9. State One Hot State Assignment.
- 10. Compare the ASM chart with a conventional flow chart.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a)		(i)	List the ASCII code for the 10 decimal digits with an odd parity i the leftmost position.	
		(ii)	Simplify the three variable logic expression.	3)
	•		$Y = \pi M (1,3,5)$	
		(iii)	Implement $Y = (A'B + AB') (C + D')$ using NOR gates. (4)	1)
			\mathbf{Or}	
	(b)	Sim	plify the following Boolean function by using tabulation method. (16	3)
		F (A	$A,B,C,D) = \Sigma(1,4,6,7,8,9,10,11,15)$	
12.	(a)	(i)	With the neat diagram, discuss the working principle of carry look ahead adder.	
		(ii)	Design a 4-bit adder using three full adders and one half adder. (5	i)
			Or	
	(b)	(i)	Write the VHDL code for BCD-to-7 segment code convertors, usin a selected signal assignment. (12)	_
		(ii)	Write test bench for half adder circuit. (4	!)
13.	(a)	(i)	Draw the PLA circuit to implement the functions (10))
		• •	$F_1 = A'B + AC' + A'BC'$	
		•	$F_2 = (AC + AB + BC)'$	
		(ii)	With the neat sketch, explain the working of RAM cell. (6	5)
			\mathbf{Or}	
	(b)	(i)	Write a VHDL code for 2-to-1 multiplexer using if-then-else statement. (10	
		(ii)	Derive the circuit for an 8-to-3 priority encoder. (6)
L4 .	(a)	outp at th	ocked sequential circuit is provided with a single input x and a single ut z. Whenever the input produces a string of pulses 111 or 000 and see end of the sequence it produces an output $z = 1$ and overlapping is allowed.	d s
		(i)	Obtain the state diagram	
		(ii)	Obtain the state table	
		(iii)	Design the sequence detector.	
			Or	
	(b)		g D flip-flops, design a synchronous counter, to count the following ated binary sequence 0,1,2,4,6. Write the VHDL code for the same.	

Design an asynchronous sequential circuit with two inputs X and Y and with one output Z. Whenever Y is 1, input X is transferred to Z. When Y is 0, the output does not change for any change in X. Use SR latch for implementation of the circuit. (16)

Or

- (b) (i) With an example explain dynamic and essential hazards. (8)
 - (ii) Give the hazard-free realization for the following Boolean functions. (8) $f(A,B,C,D) = \sum m(1,3,6,7,13,15).$