

|--|

Question Paper Code: 21375

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Computer Science and Engineering

CS 2201/CS 33/080230007/10144 CS 302 — DATA STRUCTURES

(Regulations 2008/2010)

(Common to 10144 CS 302 — Data Structures for B.E (Part-Time) Second Semester CSE – Regulations 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define ADT.
- 2. Write a C routine to deallocate the entire linked list.
- 3. What is a threaded binary tree?
- 4. List few applications of trees.
- 5. Simulate the result of inserting 3,1,4,6,2,8,9 into an initially empty AVL Tree.
- 6. How do you calculate the depth of a B-Tree?
- 7. Define the approach Union-By-Size.
- 8. State the advantages of collision resolution strategies.
- 9. Differentiate strongly connected and weakly connected graph.
- 10. What is Biconnectivity?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)		Explain the insertion deletion and traversal operations in a circularly doubly linked list with suitable ADT's and examples. (16)				
			\mathbf{Or}				
	(b)	(i)	Write ADT operations for a linear queue using an implementation.	rray (8)			
		(ii)	Write functions to multiply two polynomials using linked implementation.	list (8)			
12 .	(a)	(a) Write a C program to visit the binary tree using various tree to					
				(16)			
			Or				
	(b)	(i)	Simulate a dictionary consisting of terminologies and the meanings (Key/Value pairs) with suitable search operations us binary search tree.				
		(ii)	Explain Huffman coding with a suitable example.	(6)			
13.	(a)	Explain insertion and deletion operations of B — Tree with si Abstract data types.					
			\mathbf{Or}				
	(b)	(i)	Explain how deletion can take place in AVL trees with suita algorithms.	able (8)			
	· ,	(ii)	Write a suitable operations for percolate up and percolate do operations in a binary heap.)wn (8)			
14 .	(a)	Give	e input {4371, 1323, 6173, 4199, 4344, 9679. 1989} and a hash funct	tion			
			= x mod 10, show the resulting				
		(i)	Open addressing hash table using linear probing	(6)			
		(ii)	Open addressing hash table using quadratic probing	(6)			
	•	(iii)	Open addressing hash table with second hash function.	(4)			
			h (2 (x) -7 - (X mod 7)				
			\mathbf{Or}				
	(b)	(i)	Write the necessary algorithms required for union operation disjoint set.	in (8)			
		(ii)	Explain the process of path compression in detail.	(8)			

15 .	(a)	(i)	Write a C program to implement topological sort.	(6)
10.	(~/	\ - /	With the Property of True Land and Land Comments of the Commen	`

(ii) Explain minimum cost spanning Tree of graphs using Kruskals algorithm with suitable examples and ADT. (10)

Or

(b) Explain the depth first approach of finding articulation points in a connected graph with necessary algorithms. (16)