| LIB  |     |    |
|------|-----|----|
| 28/1 | 116 | AN |
| 281  |     |    |

## Question Paper Code: 21353

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Sixth/Seventh Semester

Computer Science and Engineering

CS 2028/CS 605/10144 CSE 22/CS 1005 — UNIX INTERNALS

(Common to Information Technology)

(Regulations 2008/2010)

(Common to PTCS 2028 – Unix Internals for B.E. (Part-Time) Fifth Semester Computer Science and Engineering – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$ 

- 1. Give any two characteristics of a UNIX file system.
- 2. Mention the difference between user and kernel modes.
- 3. What is the difference between delayed write and asynchronous write?
- 4. List any four fields present in the superblock.
- 5. What are pipes?
- 6. What is the use of the kill system call?
- 7. What comprise the user-level context of a process?
- 8. When does a process move from kernel running state to sleeping state?
- 9. Give any two functions of a line discipline.
- 10. Mention the use of the copy on write bit in the page table.

## PART B - (5 × 16 = 80 marks)

| 11.                                                              | (a) |      | olain the major data structures of the file subsystem and the processystem of the UNIX kernel.                                                 | ess<br>16)    |
|------------------------------------------------------------------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                  |     |      | $\mathbf{Or}$                                                                                                                                  |               |
|                                                                  | (b) | Wit  | h a block diagram, explain in detail the architecture of the UN<br>tem kernel. (1                                                              | IX<br>(6)     |
| 12.                                                              | (a) | (i)  | Explain the structure of a buffer pool.                                                                                                        | (4)           |
|                                                                  |     | (ii) | Explain the scenarios that kernel may follow in $getblk$ algorith while allocating a buffer for a disk block. (1)                              | m<br>2)       |
|                                                                  |     |      | $\mathbf{Or}$                                                                                                                                  |               |
|                                                                  | (b) | (i)  | Explain the <i>namei</i> algorithm that converts a path name to an inoqual number.                                                             | de<br>(8)     |
|                                                                  |     | (ii) | Explain the <i>ifree</i> algorithm for freeing an mode.                                                                                        | (8)           |
| 13. (a) Explain the implementation of the following system calls |     |      | lain the implementation of the following system calls:                                                                                         |               |
|                                                                  |     | (i)  | open (                                                                                                                                         | 8)            |
|                                                                  |     | (ii) | write.                                                                                                                                         | 8)            |
|                                                                  |     |      | $\mathbf{Or}$                                                                                                                                  |               |
|                                                                  | (b) | Exp  | lain the implementation of the $link$ system call. Discuss about the rent deadlock scenarios that may occur during the $link$ call (1)         |               |
| 14.                                                              | (a) | (i)  | Explain the algorithm for handling interrupts.                                                                                                 | 8)            |
|                                                                  | •   | (ii) | When does the kernel detach a region from a process? Explain the algorithm that the kernel follows while detaching a region from process.      | ne<br>a<br>8) |
|                                                                  |     | •    | $\mathbf{Or}$                                                                                                                                  |               |
|                                                                  | (b) | (i)  | What are signals? How are they handled?                                                                                                        | 3)            |
|                                                                  |     | (ii) | Explain the implementation of the exit system call.                                                                                            | 3)            |
| kernel swap a pi                                                 |     | kern | does the kernel manage space on the swap device? When does the swap a process out? Explain how swapping out of processes is led by the kernel. | is            |
|                                                                  |     |      | $\mathbf{Or}$                                                                                                                                  |               |
|                                                                  | (b) | (i)  | Explain the algorithm for closing a device.                                                                                                    | 3)            |
|                                                                  |     | (ii) | What is a clist? Explain the operations done on clists and cblocks.(8                                                                          | •             |