

			i			 	
Reg. No. :							
9		}					

Question Paper Code: 21385

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Computer Science and Engineering

CS 2302/CS 52/10144 CS 503 — COMPUTER NETWORKS

(Common to Information Technology)

(Regulations 2008/2010)

(Common to PTCS 2302 – Computer Networks for B.E. (Part-Time) Fourth Semester CSE – Regulations 2009 and 10144 CS 503 – Data Communication and Computer Networks for B.E. (Part-Time) Fifth Semester CSE – Regulations 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. State Demorgan's theorem.
- 2. Draw the symbolic representation of NAND gate and also truth table.
- 3. Mention the drawback of CSMA.
- 4. Draw the architecture of wireless LAN.
- 5. Write down the issues related to network layer.
- 6. What is meant by BGP?
- 7. Draw the frame format of UDP.
- 8. Mention four QoS parameters.
- 9. What is MIME?
- 10. What is telnet?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Draw and explain the function of each layers in OSI model.	(8)
		(ii)	Write a note on any two physical link. Or	(8)
	(b)	(i)	Describe any one technique used for error detection.	(6)
		(ii)	Let $g_1(x) = x+1$ and let $g_2(x) = x^3 + x^2 + 1$. Consider information bits $(1,1,0,1,1,0)$. Find the codeword corresponding these information bits if $g_1(x)$ is used as the general polynomial. Find the codeword corresponding to these informations bits if $g_2(x)$ is used as the generating polynomial. Can $g_2(x)$ desingle errors? double errors? triple errors? If not, give an example an error pattern that cannot be detected. Find the codeword corresponding to these information bits if $g(x) = g_1(x)g_2(x)$ is a state generating polynomial. Comment on the error-detection of $g(x)$.	g to ting tion etect le of used
12.	(a)	Desc	cribe the token access mechanism used in FDDI networks. Or	(16)
	(b)	(i)	Use IEEE 802.3 and IEEE 802.11 to discuss three different between wired and wireless LANs.	nces (8)
		(ii)	With the neat sketches, explain the working principle of sirbridges.	nple (8)
13. (a)	(a)	(i)	With the neat sketches, write down the algorithm of link s routing and explain the same.	state (8)
		(ii)	Why subnetting is necessary? With suitable example, explain concept of subnetting in class B network. Or	the (8)
	(b)	envi	does the Protocol Independent Multicast Protocols scale we ronments where a relatively small proportions of routers war ive traffic for certain group?	
14.	(a)		cribe the adaptive transmission mechanism and how it has evo	
			\mathbf{Or}	_
	(b)		lain the fundamental conflict between tolerating burstiness rolling network congestion.	and (16)
15 .	(a)	How	S-MIME provide better security for Email? Discuss in detail. Or	(16)
	(b)	Disc	cuss the functions of SNMP and various versions in detail.	(16)