

				, , , , , , , , , , , , , , , , , , , 	,	T
	1 1	l i]	4 1	
\mathbf{p}_{α}]		i		1 1	
Reg. No.:	1 1			}	1 1	
	ł I	l l	:	ł i	1	

Question Paper Code: 71772

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Third Semester

Civil Engineering

MA 2211/MA 31/MA 1201 A/CK 201/080100008/080210001/10177 MA 301 — TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS / MATHEMATICS – III

(Common to All Branches)

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. State the sufficient conditions for a function to be expanded as a Fourier series.
- 2. Expand f(x) = 1 in $0 < x < \pi$ as a series of sines.
- 3. State Fourier integral theorem.
- 4. Find the Fourier sine transform of $f(x) = e^{-x/2}$.
- 5. Form the PDE by eliminating the arbitrary constants 'a', 'b' from the relation $4(1+a^2)z = (x+ay+b)^2$.
- 6. Solve $(D^3 4D^2 D' + 4D D'^2)z = 0$.
- 7. State the assumptions in deriving the one dimensional wave equation $y_{tt} = \alpha^2 y_{xx}$.
- 8. Write the possible solutions of the Laplace equation $u_{xx} + u_{yy} = 0$.
- 9. Find $Z\left[\frac{1}{n+1}\right]$.
- 10. State the convolution theorem on Z-transforms.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$ and hence deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90}$. (8)
 - (ii) The following table gives the variations of a periodic current over a period.

 $t \, {
m secs}: \ 0 \, {
m T/6} \, {
m T/3} \, {
m T/2} \, 2{
m T/3} \, 5{
m T/6} \, {
m T}$ A amps: 1.98 1.30 1.05 1.30 $-0.88 \, -0.25 \, 1.98$

By harmonic analysis, show that there is a direct current part of 0.75 amps in the variable current. Also obtain the amplitude of the first harmonic. (8)

Or

- (b) (i) Find the half range sine series for $f(x) = \sin ax$ in (0, l). (8)
 - (ii) Find the complex form of the Fourier series of e^{-ax} , -l < x < l. Deduce that when α is constant other than an integer

$$\cos \alpha \, x = \sin \alpha \, l \sum_{n=-\infty}^{\infty} \frac{\alpha \, l}{\alpha^2 \, l^2 - n^2 \pi^2} (-1)^n \, e^{i n \, \pi x / l} \,. \tag{8}$$

- 12. (a) (i) Show that the Fourier transform of $f(x) = \begin{cases} a |x|, & |x| < a \\ 0, & |x| > a > 0 \end{cases}$ is $\sqrt{\frac{2}{\pi}} \left(\frac{1 \cos as}{s^2} \right). \text{ Hence deduce that } \int_0^\infty \left(\frac{\sin t}{t} \right)^2 dt = \frac{\pi}{2}. \tag{8}$
 - (ii) Solve for f(x), the integral equation

$$\int_{0}^{\infty} f(x) \sin sx \, dx = \begin{cases} 1, & 0 \le s < 1 \\ 2, & 1 \le s < 2 \\ 0, & s \ge 2 \end{cases}$$
 (8)

Or

- (b) (i) Find the Fourier transform of $e^{-|x|}$ and hence deduce that $\int_{0}^{\infty} \frac{\cos xt}{1+t^{2}} dt = \frac{\pi}{2} e^{-|x|}.$ (8)
 - (ii) Prove that $F_C[x f(x)] = \frac{d}{ds} [F_S\{f(x)\}]$ and $F_S[x f(x)] = -\frac{d}{ds} [F_C\{f(x)\}]$ (8)

13. (a) (i) Form the PDE by eliminating the arbitrary functions f_1, f_2 from the relation $z = x f_1(x+t) + f_2(x+t)$. (8)

(ii) Solve
$$\left(\frac{p}{2} + x\right)^2 + \left(\frac{q}{2} + y\right)^2 = 1$$
. (8)

Or

(b) (i) Solve
$$x^2p + y^2q = z(x + y)$$
. (8)

(ii) Solve
$$(r+s-6t) = y \cos x$$
. (8)

14. (a) An uniform elastic string of length 60 cms is subjected to a constant tension of 2 Kg. If the ends fixed and the initial displacement $y(x,0) = 60x - x^2$, 0 < x < 60, while the initial velocity is zero, find the displacement function y(x,t). (16)

Or

- (b) Solve the problem of heat conduction in a rod given that the temperature function u(x,t) is subject to the condition, $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le l$, t > 0
 - (i) u is finite as $t \to \infty$

(ii)
$$\frac{\partial u}{\partial x} = 0$$
 for $x = 0$ and $x = l$, $t > 0$

(iii)
$$u = lx - x^2$$
 for $t = 0$, $0 \le x \le l$. (16)

15. (a) (i) Find
$$Z(r^n \sin n\theta)$$
, $Z^{-1} \left[\frac{z}{z^2 + 4z + 3} \right]$. (4+4)

(ii) Find
$$Z^{-1} \left[\frac{z^2}{(z-a)(z-b)} \right]$$
 using convolution theorem. (8)

Or

- (b) (i) Using complex residue theorem evaluate $Z^{-1}\left[\frac{9z^3}{(3z-1)^2(z-2)}\right]$. (8)
 - (ii) Solve using Z-transforms technique the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$, $y_1 = 1$. (8)