

Reg. No.:						
	 <u></u>		 		 	

Question Paper Code: 73529

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Third Semester

Civil Engineering

MA 1201/070030007/070030005/070030004 — MATHEMATICS — III

(Common to all Branches)

(Regulation 2004/2007)

(Common to B.E. (Part-Time) Second Semester, Civil Engineering, Computer Science and Engineering, Electrical and Electronics Engineering, Electronics and Communication Engineering and Mechanical Engineering, Regulation 2005)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Form the partial differential equation by eliminating the function ϕ from $z = \phi(xy)$.
- 2. Find the general solution of the Lagrange linear equation given by pyz + qzx = xy.
- 3. Find a_n in the Fourier series expansion of $f(x) = x + x^3$; (-l, l).
- 4. Find the root mean square value of the function f(x) = x in (0, l).
- 5. Classify the partial differential equation $u_{xx} + xu_{yy} = 0$.
- 6. Give the three possible solutions of the one dimensional heat flow equation.
- 7. Prove that the FCT of $\{f(x)\cos ax\}$ is given by $\frac{1}{2}[F_c(s+a)+F_c(s-a)]$ where $F_c(s)$ is the Fourier cosine transform of f(x).
- 8. Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 0, & x < a \\ 1, & a < x < b \\ 0, & x > b. \end{cases}$

- 9. Find $z\left[\frac{1}{n+1}\right]$.
- 10. If $z\{f(n)\} = F(z)$, then show that $z[f(n)] = -z \frac{d}{dz} [F(z)]$.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Form the PDE from
$$f(x^2 + y^2 + z^2, z^2 - xy) = 0$$
. (8)

(ii) Find the singular integral of
$$z = px + qy + p^2 - q^2$$
. (8)

Or

(b) (i) Solve
$$x(y^2-z^2)p+y(z^2-x^2)q=z(x^2-y^2)$$
. (8)

(ii) Solve
$$(D^3 - 3D^2D' - 4DD'^2 + 12D'^3)z = \sin(x + 2y) + e^{x+y}$$
. (8)

12. (a) Find the Fourier series expansion of the periodic function f(x) of the period 2 defined by

$$f(x) = \begin{cases} 1+x, & -1 \le x \le 0 \\ 1-x, & 0 \le x \le 1. \end{cases}$$

Deduce that
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$
. (16)

Or

- (b) Find the first three harmonic of Fourier series of y = f(x) from the following data: (16)
- x 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
- y 298 356 373 337 254 155 80 51 60 93 147 221
- 13. (a) A string is stretched and fastened to two points x = 0 and x = l apart. The $\frac{l}{3}$ point of the string is displaced to a distance 'h' and is released from rest. Find the displacement at any point of the string at any time t. (16)

Or

(b) The ends A and B of a rod of 30 cms length have their temperature kept at 20°C and the other at 80°C, until steady conditions prevail. The temperature of the end B is suddenly reduced to 60°C and kept so while the end A is raised to 40°C. Find the temperature distribution in the rod after time t. (16)

14. (a) Find the Fourier transform of

$$f(x) = \begin{cases} a^2 - x^2; & |x| < a \\ 0; & |x| > a, a > 0 \end{cases}$$

and hence deduce

(i)
$$\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3} \right) dt$$

(ii)
$$\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3} \right)^2 dt.$$
 (16)

Or

- (b) (i) Find the Fourier sine and cosine transforms of xe^{-ax} , a > 0. (8)
 - (ii) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$ using Fourier sine or cosine transforms. (8)
- 15. (a) (i) Find the response of the system $y_{n+2} 5y_{n+1} + 6y_n = u_n$ with $y_0 = 0$, $y_1 = 1$ and $u_n = 1$ for n = 0, 1, 2, 3, ... by z-transform method. (8)
 - (ii) Find the inverse z-transform of $\frac{z^3 20z}{(z-2)^3(z-4)}$. (8)

Or

- (b) (i) Use convolution theorem to evaluate $z^{-1} \left\{ \frac{z^2}{(z-a)(z-b)} \right\}$. (8)
 - (ii) If $z[n^2] = \frac{z^2 + z}{(z-1)^3}$ then find $z[(n+1)^2]$. (8)