

Reg. No.

Question Paper Code: 21771

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Second Semester

Civil Engineering

MA 2161/MA 22/080030004 - MATHEMATICS - II

(Common to all Branches)

(Regulations 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Transform $(x^2D^2 3xD + 2)y = \sin(2\log x)$ into an ordinary differential equation with constant coefficient.
- 2. Find a differential equation of x(t) given $\frac{dy}{dt} + x = \cos t$; $\frac{dx}{dt} + y = e^{-t}$.
- 3. Prove that $\nabla r^n = nr^{n-2}\vec{r}$
- 4. Using Green's theorem in a plane show that the area enclosed by a simple closed curve C is $\frac{1}{2} \int_C x dy y dx$.
- 5. Prove that a real part of an analytic function is a harmonic function.
- 6. Find the invariant points of $w = \frac{z}{z^2 2}$.
- 7. Evaluate $\int_{C} \frac{e^{3z}}{z(z-1)} dz$ where C is the circle |z-3|=1.
- 8. Define essential singularity and give example.
- 9. What is meant by exponentially ordered function?
- 10. Evaluate $\int_{0}^{\infty} \frac{1-e^{-t}}{t} dt$ by using Laplace Transform.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Solve:
$$\frac{d^2y}{dx^2} - 11\frac{dy}{dx} + 18y = e^{+2x} + e^{-x}\cos x + x$$
. (8)

(ii) Solve:
$$\frac{dx}{dt} + 2x - 3y = t$$
; $\frac{dy}{dt} - 3x + 2y = e^{2t}$. (8)

Or

(b) (i) Solve
$$\frac{d^2y}{dx^2} + 4y = \cot 2x$$
 by using variation of parameters. (8)

(ii) Solve
$$(7+2x)^2 \frac{d^2y}{dx^2} - 6(7+2x)\frac{dy}{dx} + 8y = 6x.$$
 (8)

- 12. (a) (i) Find the angle between the surfaces $x^2 y^2 z^2 = 11$ and xy + yz + zx 18 = 0 at the point (6,4,3). (6)
 - (ii) Verify Gauss Divergence Theorem for $\vec{F} = y\vec{i} + x\vec{j} + z^2\vec{k}$ for the cylindrical region S given by $x^2 + y^2 = a^2, z = 0$ and z = h. (10)

Or

- (b) (i) Prove that $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 z)\vec{j} + (3xz^2 y)\vec{k}$ is a conservative field hence find the scalar potential of \vec{F} . (6)
 - (ii) Verify Stoke's theorem for $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ over the box bounded by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c if the face z = 0 is cut. (10)
- 13. (a) (i) If u(x, y) and v(x, y) are harmonic functions in a region R, prove that $\left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ is analytic. (8)
 - (ii) Find the bilinear transformation which transform the points $z=0, 1, \infty$ into w=i,-1,-i respectively. (8)

 \mathbf{Or}

- (b) (i) If f(z) = u + iv is analytic, find f(z) given that $u + v = \frac{\sin 2x}{\cosh 2v \cos 2x}.$ (8)
 - (ii) Under the transformation $w = \frac{1}{z}$ determine the region in w plane of the infinite strip bounded by $\frac{1}{4} \le y \le \frac{1}{2}$. (8)

14. (a) (i) Evaluate
$$\int_C \frac{e^z dz}{z(1-z)^3} \text{ if } C \text{ is } |z| = 2, \text{ by using Cauchy's integral}$$
formula. (8)

(ii) Evaluate
$$\int_{0}^{\infty} \frac{dx}{x^4 + a^4}$$
 (8)

Or

(b) Expand
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 in Laurent's series valid in $1 < |z| < 3$ and also $0 < |z+1| < 2$. (8)

(ii) By using Cauchy's residue theorem evaluate
$$\int_C \frac{\sin \pi z + \cos \pi z}{(z+2)(z+1)^2} dz$$
 where C is $|z| = 3$.

15. (a) (i) Find the Laplace transform of
$$f(t) = \begin{cases} t, & 0 < t < a \\ 2a - t, & a < t < 2a \end{cases}$$
 and $f(t+2a) = f(t)$.

(ii) Find the inverse Laplace transform of
$$\frac{se^{-s}}{s^2+4}$$
. (4)

(iii) Solve
$$y''+2y'+y=te^{-t}$$
, $y(0)=1$, $y'(0)=-2$. (7)

Or

(ii) Using convolution theorem find inverse Laplace transform of
$$\frac{s^2 + s}{(s^2 + 4)(s^2 + 2s + 10)}$$
. (10)