21/2/15/2

Reg. No.:

Question Paper Code: 13020

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

First Semester

Civil Engineering

MA 105 — MATHEMATICS – I

(Common to all Branches)

(Regulation 2007).

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. If two of the eigen values of $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8, what is the third eigen value?
- 2. Discuss the nature of the quadratic form $8x^2 + 7y^2 + 3z^2 12xy + 4zx 8yz$.
- 3. Find the centre and raditis of the sphere $x^2 + y^2 + z^2 + 2y 4z 4 = 0$.
- 4. If $\frac{x}{1} = \frac{y}{2} = \frac{z}{k}$ a generator of the cone $x^2 + y^2 z^2 = 0$, find the value of k.
- 5. Find the curvature of the circle $x^2 + y^2 = 25$ at (3,4).
- 6. Find the equation of the envelope of the family of curves $x^2 + y^2 2px + p^2/2 = 0$.
- 7. If $f(x,y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{(\log x \log y)}{x^2 + y^2}$, prove that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + 2f = 0$.
- 8. Let $f(x,y) = x \sin y + e^x \cos y$, $x = t^2 + 1$, $y = t^2$ then find the value of $\left(\frac{\partial f}{\partial t}\right)_{t=0}$.

- 9. Solve $(D^2 + 1)^2$ y = 0, where $D = \frac{d}{dx}$.
- 10. Find the particular integral of $\frac{d^2y}{dx^2} 4y = \cosh(2x 1)$.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Verify Cayley—Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Hence compute A^{-1} .

Or

- (b) Reduce $6x_1^2 + 3x_2^2 + 3x_3^2 4x_1 x_2 2x_2 x_3 + 4x_3 x_1$ into canonical form by an orthogonal transformation.
- 12. (a) Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. Find also the equations and the points in which the S.D meets the given lines.

Or

- (b) Find the equation of the right circular cone generated by the straight lines drawn from the origin to cut the circle through the three points (1,2,2), (2,1,-2) and (2,-2,1).
- 13. (a) (i) Find the radius of curvature for $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at (a/4, a/4). (8)
 - (ii) Find the evolute of the parabola $x^2 = 4y$. (8)

Or

- (b) (i) Obtain the envelope of $y = mx 2am am^3$ where m is the parameter. (8)
 - (ii) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by considering it as the envelope of normals. (8)

- 14. (a) (i) Discuss the maxima and minima of $x^3 y^2 (1-x-y)$. (10)
 - (ii) Expand $e^x \sin y$ in powers of x and y as far as terms of second degree. (6)

Or

- (b) (i) Find the minimum value of $x^2 + y^2 + z^2$, given that ax + by + cz = p. (10)
 - (ii) If u = xyz, $v = x^2 + y^2 + z^2$, w = x + y + z, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. (6)
- 15. (a) (i) Solve $(x^2 D^2 3xD + 4)y = x^2 + \cos(\log x)$. (8)
 - (ii) Solve $\frac{dx}{dt} + 2y = \sin 2t$, $\frac{dy}{dt} 2x = \cos 2t$. (8)

Or

- (b) (i) Solve by the method of reduction of order $(x+1)\frac{d^2y}{dx^2} 2(x+3)\frac{dy}{dx} + (x+5)y = e^x.$ (8)
 - (ii) Solve $(D^2 + 2D + 1)y = x^3 + \sin 2x \cos x$. (8)