Reg. No. :

Maximum: 100 Marks

Question Paper Code: 41102

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2015.

First Semester

Civil Engineering

14UMA102 - ENGINEERING MATHEMATICS - I

(Common to all branches)

(Regulation 2014)

Duration: Three hours

Answer ALL Questions.

PART A - (10 x 1 = 10 Marks)

1. If $A = \begin{pmatrix} 2 & 1 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{pmatrix}$ then eigen values of A^{-1} are (a) 2, 3, 5 (b) 2, 1, 4 (c) $\frac{1}{2}, \frac{1}{3}, \frac{1}{5}$ (d) $\frac{1}{2}, 1, \frac{1}{4}$ 2. If 0, 3, 4 are eigen values of a square matrix A of order 3 then |A| =(a) 12 (b) 0 (c) ∞ (d) $\frac{1}{12}$

3. The harmonic series $\sum \frac{1}{n^p}$ is convergent if (a) p > 1 (b) p < 1 (c) p = 1 (d) $p \le 1$

4. $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n =$ (a) *n* (b) 1 (c) *e* (d) $\frac{1}{e}$ 5. The curvature of the curve $(x-2)^2 + (y-3)^2 = 16$ at any point is

(a) 4 (b)
$$\frac{1}{4}$$
 (c) 6 (d) $\frac{1}{6}$

6. The envelope of the family of straight lines $at^2 = ty - x$, t is the parameter, is

(a) $y^2 = 4ax$ (b) $y^2 = ax$ (c) $x^2 = 4ay$ (d) $x^2 = ay$

7. Let *u* and *v* be functions of *x*, *y* and $u = e^{v}$. Then *u* and *v* are

- (a) Functionally dependent (b) Functionally independent
- (c) Functionally linear (d) Functionally non-linear

8. A stationary point of f(x, y) at which f(x, y) has neither a maximum nor a minimum is called

(a) Extreme point(b) Max-Min point(c) Saddle point(d) Nothing can be said

9. The value of
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} dy dx$$
 is
(a) $\frac{\pi a^{2}}{4}$ (b) $\frac{\pi a^{2}}{2}$ (c) $\frac{\pi a^{2}}{8}$ (d) πa^{2}

10.
$$\int_{1}^{a} \int_{1}^{b} \frac{dx \, dy}{x + y} =$$
(a)
$$\int_{1}^{b} \int_{1}^{a} \frac{dx \, dy}{x + y}$$
(b)
$$\int_{1}^{b} \int_{1}^{a} \frac{dy \, dx}{x + y}$$
(c)
$$\int_{1}^{b} \int_{0}^{a} \frac{dy \, dx}{x + y}$$
(d)
$$\int_{1}^{b} \int_{a}^{b} \frac{dy \, dx}{x + y}$$

PART - B (5 x 2 = 10 Marks)

- 11. Determine the nature of the quadratic form $x_1^2 + 3x_2^2 + 6x_3^2 + 2x_1x_2 + 2x_2x_3 + 4x_3x_1$ without reducing to canonical form.
- 12. State Leibnitz's test.
- 13. Find the radius of curvature of the curve $y=e^x$ at x=0.

14. If
$$u = f(x - y, y - z, z - x)$$
, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

15. Evaluate $\int_{1}^{2} \int_{0}^{x^2} x \, dy \, dx.$

PART - C (5 x 16 = 80 Marks)

16. (a) (i) Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. (8)

(ii) Using Cayley Hamilton theorem, find the inverse of the matrix
$$\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$
. (8)

Or

- (b) Reduce the quadratic form $x_1^2 + 2x_2^2 + x_3^2 2x_1x_2 + 2x_2x_3$ to the canonical form through an orthogonal transformation and hence show that it is positive semi-definite. (16)
- 17. (a) (i) Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.6} + \dots$ (8)
 - (ii) Examine the convergence of the series $\frac{x}{1+x} \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} \dots \quad (x > 0)$ (8)

Or

(b) Show that the series
$$\sum_{h=1}^{\alpha} \frac{(-1)^{n-1}}{2n-1}$$
 is conditionally convergent. (16)

18. (a) (i) Find the centre and circle of curvature for the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$. (8)

(ii) Find the envelope of the family $\frac{x}{a} + \frac{y}{b} = 1$ where *a* and *b* are parameters connected by $a^2 + b^2 = c^2$, *c* is a constant. (8)

Or

(b) (i) Find the radius of curvature for the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$. (8)

- (ii) Show that evolute of the cycloid $x=a(\theta-\sin\theta)$, $y=a(1-\cos\theta)$ is another cycloid. (8)
- 19. (a) (i) Find the Taylor's series expansion of $e^x \log(1+y)$ in powers of x, y upto the third degree terms. (8)

(ii) Find the volume of the greatest rectangular parallelepiped inscribed in the ellipsoid

whose equation is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$
 (8)

Or

(b) (i) If $g(x, y) = \psi(u, v)$, where $u = x^2 - y^2$, v = 2xy, then prove that

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 \psi}{\partial u^2} + \frac{\partial^2 \psi}{\partial v^2} \right).$$
(8)

(ii) Find the Jacobian of y_1 , y_2 , y_3 with respect to x_1 , x_2 , x_3 where $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$,

$$y_3 = \frac{x_1 x_2}{x_3}.$$
 (8)

- 20. (a) (i) Change the order of integration $\inf_{0}^{a} \int_{\frac{x^2}{a}}^{2a-x} x y \, dx \, dy$ and hence evaluate it. (8)
 - (ii) Find the area lying between the parabola $y = x^2$ and the line y = x. (8)

Or

- (b) (i) By changing in to polar coordinates, evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy.$ (8)
 - (ii) Find the volume of the tetrahedron bounded by the planes $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, x = 0, y = 0and z = 0. (8)