Reg. No. :

Question Paper Code: 41002

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2015.

Fourth Semester

Civil Engineering

01UMA422 - NUMERICAL METHODS

(Common to Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. What is the condition for the convergence of the fixed point iteration method?
- 2. Write the iterative formula of Newton Raphson's method.
- 3. State condition for the convergence of iterative methods of solving system of linear algebraic equations.
- 4. How will you find the smallest Eigen value of a square matrix numerically by using the power method?
- 5. State Newton's backward interpolation formula.
- 6. Write the divided difference table for the given data.

x :	2	4	7
y :	1	9	36

- 7. State Newton's forward formula to find $\frac{dy}{dx}, \frac{d^2y}{dx^2} \& \frac{d^3y}{dx^3}$ at $x = x_0$
- 8. State Romberg's integration formula to find the value of $I = \int_{a}^{b} f(x) dx$ for first two intervals.
- 9. State the principle of least squares.
- 10. What is the disadvantage of the method of moments, when compared with the method of group averages and least squares?

PART - B
$$(5 \times 16 = 80 \text{ Marks})$$

- 11. (a) (i) Find the positive root of x cosx = 0 by bisection method. (8)
 - (ii) Using Ramanujan's method ,find the root of $x e^x = 1$. (8)

Or

- (b) (i) Find the Positive root of $x^3 = 2x + 5$ by False position method. (8)
 - (ii) Find the root of $x^3 = 6x 4$ that root lies between 0 &1 by Newton - Raphson's method. (8)
- 12. (a) (i) Solve the system of equations by Gauss Jordan method.

$$x + 2y + z = 3$$

$$2x + 3y + 3z = 10$$

$$3x - y + 2z = 13.$$
(8)

(ii) Find the numerically largest Eigen value of $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ and the corresponding Eigen Vector. (8)

Or

(b) (i) Solve the system of equations by using Gauss-Seidel method.

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

$$6x + 3y + 12z = 35.$$
(8)

(ii) Find the Eigen values and Eigen Vectors of the real symmetric matrix

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
 by Jacobi's method. (8)

13. (a) (i) From the following table of Half - Yearly Premium for policies maturing at different ages, estimate the Premium for policies maturing at age 46 & 63. (8)

Age x:	45	50	55	60	65
Premium y:	114.84	96.16	83.32	74.48	68.48

(ii) Using Lagrange's Interpolation formula, find y(10) from the following table. (8)

x:	5	6	9	11
y:	12	13	14	16

(b) (i) From the following table find f(x) and hence find f(6) using Newton's divided difference interpolation formula. (8)

x:	1	2	7	8
f(x):	1	5	5	4

(ii) Using cubic spline, find y(0.5) & y'(1) given $M_0 = M_2 = 0$ from the table. (8)

x:	0	1	2
<i>y</i> :	-5	-4	3

14. (a) (i) Find the first two derivatives of $y = (x)^{1/3}$ at x = 50 & x = 56 given the table below. (8)

x :	50	51	52	53	54	55	56
y :	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

(ii) Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \sin(x+y) dx dy$ by using Trapezoidal rule & Simpson's rule. (8)

3

41002

- (b) (i) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Romberg's method, and hence obtain approximate value for π . (6)
 - (ii) Using Gaussians three-point formula to evaluate $\int_{-1}^{1} (3x^2 + 5x^4) dx$. (4)

(iii)Evaluate $\int_0^1 e^x dx$ by simpson's one-third rule correct to three decimal places. (6)

15. (a) (i) Find a straight line fit of the form y = a + bx by the method of group averages for the following data. (8)

x :	0	5	10	15	20	25
y :	12	15	17	22	24	30

(ii) Fit a curve of the form $y = ax^b$ to the data.

x :	1	2	3	4	5	6
y :	1200	900	600	200	110	50

Or

(b) (i) Fit a Parabola, by the method of least squares to the following data, also estimate y at x = 6. (8)

x :	1	2	3	4	5
y :	5	12	26	60	97

(ii) By using the method of moments, obtain a second degree curve which fits best to the following data.

x :	1	2	3	4
y :	0.30	0.64	1.32	5.40

⁽⁸⁾