Reg. No. :	
------------	--

Question Paper Code: 31001

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2015.

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all branches)

(Regulation 2013)

Duration: Three hours

Answer ALL Questions.

Maximum: 100 Marks

PART A - (10 x 2 = 20 Marks)

- 1. State Parseval's theorem in Fourier series.
- 2. What do you mean by harmonic analysis in Fourier series?
- 3. Find the Fourier cosine transform of e^{-2x} .
- 4. State the relation between $F{f(x)}$ and $F{f(ax)}$.
- 5. Define convolution of two sequences with respect to unilateral Z transforms.
- 6. Write the formula for $Z^{-1}[F(z)]$ using Cauchy's residue theorem.

7. What does a^2 represent in the equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$?

- 8. Write the appropriate solution of the one dimensional heat flow equation.
- 9. State the diagonal five point formula to solve the equation $u_{xx} + u_{yy} = 0$.
- 10. Write a difference formula for solving one dimensional wave equation $u_{tt} = a^2 u_{xx}$.

PART - B ($5 \times 16 = 80$ Marks)

11. (a) (i) Find the Fourier series expansion of $f(x) = x^2 + x$ in (-2, 2). Hence find the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \infty$ (8)

(ii) Find the Fourier series expansion of the function $f(x) = \begin{cases} 0 & : -\pi \le x \le 0 \\ sinx & : 0 \le x \le \pi \end{cases}$ (8)

- (b) (i) Find the half range cosine series of $f(x) = \begin{cases} x &: 0 < x < 1 \\ 2 x &: 1 < x < 2 \end{cases}$ (8)
 - (ii) Find the Fourier series of y = f(x) in (0, 2π) up to third harmonic from the following values of x and y.
 (8)

x	0	$\frac{\pi}{3}$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
У	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

12. (a) (i) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| : |x| < 1 \\ 0 : otherwise \end{cases}$ and hence find the value of $\int_0^\infty \frac{\sin^4 t}{t^4} dt$ (8)

(ii) Find the Fourier cosine transform of e^{-x^2} and hence find the Fourier sine transform of $x e^{-x^2}$. (8)

Or

- (b) (i) Find the Fourier transform of $e^{-a|x|}$ if a > 0 (8)
 - (ii) Find the Fourier sine transform of $f(x) = \begin{cases} x &: 0 < x < 1 \\ 2 x &: 1 < x < 2 \\ 0 &: x > 2 \end{cases}$ (8)
- 13. (a) (i) Find the Z transform of aⁿ cosnπ and e^t sin2t. (8)
 (ii) Solve y_{n+2} + 6y_{n+1} + 9y_n = 2ⁿ given thaty₀ = y₁ = 0, using Z transforms. (8)
 - Or
 - (b) (i) Find the inverse Z transform of $X(z) = \frac{2z}{(z-1)(z^2+1)}$ by Residue method. (8)

(ii) Find the inverse Z transform of $X(z) = \frac{8z^2}{(2z-1)(4z-1)}$ using convolution theorem. (8)

31001

14. (a) A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = 3(lx - x^2)$ from which it is released at time t = 0. Find the displacement of any point on the string at a distance of x from one end at any time t. (16)

Or

- (b) A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite length. If the temperature at short edge y = 0 is given by $u = \begin{cases} 20 x & : 0 \le x \le 5 \\ 20(10 x) : 5 \le x \le 10 \end{cases}$ and all the other three edges are kept at 0°C. Find the steady state temperature at any point of the plate. (16)
- 15. (a) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length 1 unit. (16)

Or

- (b) (i) Solve, by Crank-Nicholson method, the equation $u_{xx} = u_t$ subject to u(x, 0) = 0, u(0, t) = 0 and u(1, t) = t for two time steps by taking h = 0.25. (8)
 - (ii) Evaluate the pivotal values of the following equation taking h = 1 and up to one half of the period of the oscillation $16u_{xx} = u_{tt}$ givenu(0, t) = 0, u(5, t) = 0, $u(x, 0) = x^2(5 - x)$ and $u_t(x, 0) = 0$. (8)