Reg. No. :

Question Paper Code: 41272

M.E. DEGREE EXAMINATION, DECEMBER 2014.

First Semester

VLSI Design

14PVL101 - VLSI TECHNOLOGY

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	(a) Thin thermal ox	for MOS devices can be ide cture of thermal oxide	(b) Silicon Nitr (d) All the abov		
2.	Electron Lithography offers higher resolution than optical lithography because of its				
	small wavelength of				
	(a) 20-40 keV	(b) 100-200 keV	(c) 10-50 keV	(d) 0-100 keV	
3.	Rutherford backscatter	ing technique has been	used for measurin	g distributions of	
	heavy elements in				
	(a) Gold	(b) Platinum	(c) Arsenic	(d) Silicon	
4.	The charge stored on	a capacitor of area A,	dielectric thickness	d, and dielectric	
	permittivity ε , with a voltage across the capacitor V _s is.				
	(a) $Q_s = \epsilon Ad/V_s$	(b) $Q_s = \varepsilon A V_s / d$	(c) $Q_s=d/\epsilon AV_s$	(d) $Q_s = \epsilon d/A V_s$	
5.	Estimate the number of	gates that can be include	ed on a logic gate arra	ay chip which is to	
			a con a regio gate uni		

be assembled in a 100 input-output package. Assume α =4.5 and β =0.5

(a) 490 gates (b) 100 gates (c) 103 gates (d) 493 gates

PART - B (5 x 3 = 15 Marks)

6. List the steps to evaluate epitaxial slices, layer doping and thickness.

- 7. Illustrate the lithographic process used to fabricate circuit chips.
- 8. What is the significance for determining diffusivities in diffusion study?
- 9. What is electron beam lithography? Calculate the energy deposition functions to electron scattering in solids.
- 10. Elucidate the fundamental principles of Chromatography.

PART - C (
$$5 \times 16 = 80$$
 Marks)

11. (a) Illustrate the silicon crystals prepared by the Czochralski technique for the IC fabrication. (16)

Or

- (b) (i) Examine the oxidation model and its fit to experimental data. Also describe the effects of orientation, dopant concentration and surface damage on the kinetics of oxidation.
 - (ii) Describe the oxidation of polysilicon in fabricating CMOS VLSI technology.

(6)

12. (a) (i)	Explain the optical lithography for the formation of images.	(10)
-------------	--	------

(ii) List the various materials, sources and masks used in X-ray lithography. (6)

Or

(b) (i)	Describe the variou	is mechanism for anisotropi	c etching. (10)
---------	---------------------	-----------------------------	-----------------

- (ii) Discuss the effect of plasma parameters. (6)
- 13. (a) (i) Why polysilicon is used as the gate electrode in MOS devices. Analyze the polysilicon utilized in the CMOS fabrication. (6)
 - (ii) Discuss the theory on fick's one-dimensional diffusion equation. (10)

Or

(b) (i)	Analyze the practical aspects of ion implantation.	(6)

- (ii) What is annealing? Explain the process involved in annealing. (10)
- 14. (a) (i) Elucidate the methods used to simulate ion implantation phenomena in solids.

(10)

(ii) Describe a model that simulates epitaxial doping profiles in a variety of growth conditions.(6)

Or

(b) (i)	Explain the steps in fabricating CMOS inverter.	(10)
	(ii)	List and discuss the special considerations for Bipolar Integrated circuits.	(6)
15. (a	ı) (i)	Discuss the interactions of various analytical beams with materials.	(10)
	(ii)	Explain the fourier transform Infrared Spectrophotometer.	(6)
		Or	

(b) Describe the today's basic assembly operations for VLSI devices. (16)