Reg. No. :	
------------	--

Question Paper Code: 31001

B.E. / B.Tech. DEGREE EXAMINATION, OCTOBER 2014.

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all branches)

(Regulation 2013)

Duration: Three hours

Answer ALL Questions.

Maximum: 100 Marks

PART A - (10 x 2 = 20 Marks)

- 1. State the conditions for f(x) to have Fourier series expansion.
- 2. If $f(x) = \sin x$, $in \pi < x < \pi$, find the values of a_0 and a_0 ?
- 3. Define Fourier Integral theorem.
- 4. Find the Fourier sine transform of $\cos x$, 0 < x < a.
- 5. Find the *z* transform of $\{n\}$.
- 6. State initial and final value theorems on z transform.
- 7. Write down the three possible solutions of one dimensional heat equation.
- 8. A string is stretched and fastened to two points ℓ apart. Motion is started by displacing the string into the form $y = y_0 \sin\left(\frac{\pi x}{\ell}\right)$ from which it is released at time t = 0. Formulate this problem as the boundary value problem.

- 9. Write the diagonal five point formula to solve the equation $u_{xx} + u_{yy} = 0$.
- 10. State Crank Nicholson scheme to solve $u_{xx} = a u_t$ when $k = ah^2$.

PART - B (5 x
$$16 = 80$$
 Marks)

11. (a) Expand $f(x) = x^2$ when $-\pi \le x \le \pi$ in a Fourier series of periodicity 2π . Hence deduce that

(i)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots = \frac{\pi^2}{12}$$

(ii) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$. (16)

Or

- (b) (i) Expand the function $f(x) = \sin x, 0 < x < \pi$ in a Fourier cosine series. (8)
 - (ii) Find a Fourier series up to two harmonic to represent f(x)

x	0	$\frac{\pi}{3}$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
f(x)	1	1.4	1.9	1.7	1.5	1.2	1

12. (a) (i) Show that the Fourier transform of $e^{-x^2/2}$ is self reciprocal. (8)

(ii) Find the Fourier transform of f(x) = 1 - |x| if |x| < 1 and hence find the value of

$$\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt.$$
(8)

Or

(b) Find the Fourier cosine and sine transform of e^{-ax} , a > 0 and hence evaluate $\int_{0}^{\infty} \frac{dx}{\left(a^{2} + x^{2}\right)^{2}} \text{ and } \int_{0}^{\infty} \frac{x^{2}}{\left(a^{2} + x^{2}\right)^{2}} dx$ (16)

13. (a) (i) Find the inverse z - transform of $\frac{z^2}{(z-a)(z-b)}$ using convolution theorem. (8)

(8)

(ii) Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given $y_0 = y_1 = 0$. (8)

Or

(b) (i) Find the inverse z - transform of $\frac{z}{(z-1)^2(z+1)}$. (8)

(ii) Solve
$$y_{n+2} - 4y_{n+1} + 4y_n = 0$$
 given $y_0 = 1, y_1 = 0$. (8)

14. (a) A tightly stretched string with fixed end points x = 0 and $x = \ell$ is initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity $3x(\ell - x)$. Find the displacement. (16)

Or

- (b) A rod of length *l* has its ends *A* and *B* maintained at 0° C and 100° C respectively, until steady state conditions prevail. If *B* is suddenly reduced to 0° C and maintained at 0° C, find the temperature at a distance *x* from *A* at time *t*. (16)
- 15. (a) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length 1 unit. (16)

Or

(b) Solve numerically $4u_{xx} = u_{tt}$ with the boundary conditions u(0,t) = 0, u(4,t) = 0 and the initial conditions $u_t(x,0) = 0$ and u(x,0) = x (4-x) taking h = 1 up to 4 time steps. (16)