Question Paper Code: 92071

M.E. DEGREE EXAMINATION, MAY 2014.

Elective

VLSI Design

01PVL513 - DESIGNING WITH CPLDS AND FPGAS

(Regulation 2013)

Duration: Three hours

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. Decompose the function f(a, b, c) = ab + ac + bc.
- 2. Differentiate static and dynamic hazards.
- 3. What are the various steps for obtaining state assignment?
- 4. Compare Mealy and Moore machine.
- 5. What is meant by essential hafards?
- 6. State Unger's theorem.
- 7. Differentiate between PLA and PAL.
- 8. Draw the model of algorithmic state machine.
- 9. What are the different FPGA technologies?
- 10. Implement T-Flip-flop in FPGA.

Maximum: 100 Marks

PART - B (5 x 14 = 70 Marks)

11. (a) (i) Realize the following Boolean function using 8 - to - 1 line multiplexer where w, x and z appear on selection line S_2 , S_1 and S_0 respectively

$$f(w, x, y, z) = \sum m(1, 2, 6, 7, 9, 11, 12, 14, 15).$$
(8)

(ii) Realize the following Boolean function using 3 - to - 8 - line decoder and NOR gates.

$$F_1(x_2, x_1, x_0) = \sum m(0, 1, 5, 6, 7)$$

$$F_2(x_2, x_1, x_0) = \sum m(1, 2, 3, 6, 7).$$
(6)

Or

(b) Determine all the static 1 - hazards and static 0-hazards for the following Boolean functions and redesign each network to be hazard-free.

$$F_{1}(w, x, y, z) = yz + wxy' + w'yz'$$

$$F_{2}(w, x, y, z) = (w + x + y) (w + x' + z') (w' + x' + y') (w' + x + z).$$
(14)

12. (a) The state table shown below is for a clocked synchronous sequential network. Assigning codes in binary order to the states, determine minimal-sum excitation and output expressions for the sequential network using JK flip - flop. (14)

	Next state		
Present state	Input(x)		Output(z)
	0	1	Output(z)
А	А	В	1
В	С	А	0
С	А	D	0
D	С	С	1

Or

	Next state		Output(z)	
Present state	Input(x)		Input(x)	
	0	1	0	1
А	В	С	1	1
В	D	В	0	0
С	В	А	0	1
D	D	Е	0	0
E	F	G	1	1
F	D	F	0	0
G	F	Н	0	1
Н	F	Ι	1	1
Ι	В	Е	0	1

(b) Determine minimal state table for the following state table.

- 13. (a) Design a fundamental mode asynchronous sequential network to meet the following requirements.
 - (1) There are two inputs x_1 and x_2 and a single output z.
 - (2) The inputs x_1 and x_2 never change simultaneously.
 - (3) The output is always to be 0 when $x_1 = 0$, independent of the x_2 .
 - (4) The output is to become 1 if x_2 changes while $x_1 = 1$ and is to remain 1 until x_1 becomes 0 again. (14)

Or

(b) Implement the following using CPLD

- (i) Shift Register.
- (ii) Parallel Adder with accumulator. (14)
- 14. (a) Design PAL architecture to implement the following Boolean function

$$F_{1}(x, y, z) = \sum m (1, 2, 4, 6, 7)$$

$$F_{2}(x, y, z) = \sum m (2, 4, 5, 6)$$

$$F_{1}(x, y, z) = \sum m (1, 4, 6).$$
(14)

3

- (b) Construct an ASM chart for a counter having a single input variable G. When G = 0, the counter is to behave as a mod 8 binary counter; while when G = 1, it is to behave as a mod 8 Gray code counter. (14)
- 15. (a) Briefly explain XILINX 3000 series FPGA with necessary diagrams. (14)

Or

(b) Implement 4 - bit adder using XILINX FPGA. (14)

PART - C
$$(1 \times 10 = 10 \text{ Marks})$$

16. (a) Obtain a minimal state table for a clocked synchronous sequential network

having a single input line x, in which the symbols 0 and 1 are applied, and a single output line z. An output of 1 is to be produced coincident with each third multiple of the input symbol 1. At all other times the network is to produce 0 outputs.

$$X = 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0$$

$$Z = 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0.$$
(10)

Or

(b) Design PLA architecture to implement the following Boolean function

$$\begin{split} F_1 &(x, y, z) = \sum m \ (3, 6, 7) \\ F_2 &(x, y, z) = \sum m \ (0, 1, 2, 6, 7) \\ F_1 &(x, y, z) = \sum m \ (0, 1, 3, 4, 5). \end{split} \tag{10}$$