Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 12022

M.E. DEGREE EXAMINATION, MAY 2014.

First Semester

Communication Systems

01PCM102 - ADVANCED RADIATION SYSTEMS

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. Find the radiation resistance of an infinitesimal dipole for overall length is $1 = \lambda/25$.
- 2. What do you mean by Handset Antenna?
- 3. State Huygen's principle for Aperture Antenna.
- 4. What are the types of feeds widely used for Reflector Antenna?
- 5. What is the need for phase shifter in phased array Antenna?
- 6. What are the advantages for DolphTschebycheff array over Binomial array?
- 7. List the limitations of Microstrip Patch Antenna.
- 8. List the different techniques are used for feeding Microstrip Antenna.
- 9. Define CATR.
- 10. Which types of antennas are called Frequency independent Antenna? Why?

PART - B (5 x 14 = 70 Marks)

11.	(a)	(i)	Derive an expression for power density and radiation resistance of a Di	pole
			Antenna.	(10)
		(ii)	Discuss briefly about balance and unbalance transformer.	(4)
			Or	
	(b)	(i)	Explain the procedure to find the electric and magnetic fields generated	by
			an electric and magnetic current source.	(7)
		(ii)	Explain in detail about Reciprocity theorem and its application in anten	na.
				(7)
12.	(a)	(i)	Explain the working principle of Pyramidal horn and derive the express for directivity.	ion (10)
		(ii)	Derive the expression for Hygen's principle with neat diagram.	(4)
			Or	
	(b)	Der	rive the expressions for the radiated fields for a uniform rectangular aper	ture.
				(14)
13.	(a)	(i)	Derive the expressions for directivity of maxima, minima and beam with	dth
			for an End fire array.	(10)
		(ii)	Differentiate Broadside array and End fire array.	(4)
			Or	
	(b)	Exp	plain the design procedure for broadside DolphTchebycheff array of 21	M (or)
		2M	+1 elements with spacing 'd' between elements.	(14)
14.	(a)	Exp	plain the concept of cavity model for rectangular microstrip antenna.	(14)
			Or	
	(b)	(i)	Derive expressions for the input impedences of rectangular and circular	•
			patch antenna.	(4)
		(ii)	Write short notes on ring antenna	(6)
		(iii)) Describe the applications of microstrip array antenna.	(4)

15. (a) With neat diagram explain the working principle of

- (i) Log Periodic antenna (7)
- (ii) Biconical antenna. (7)

Or

(b) Discuss in detail about

- (i) Antenna gain measurement (7)
- (ii) Radiation pattern measurement. (7)

PART - C (1 x 10 = 10 Marks)

16. (a) Design Broadband planar antennas and list the applications. (10)

Or

(b) Explain the and principle of wideband single feed circularly polarized microstrip antennas. (10)