Reg. No.:			

Question Paper Code: 34082

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Fourth Semester

Information Technology

01UIT402 - ANALYSIS AND DESIGN OF ALGORITHMS

(Regulation 2013)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions.

PART A -
$$(10 \times 2 = 20 \text{ Marks})$$

- 1. What is an algorithm design technique?
- 2. What is meant by linear search?
- 3. Write general plan for analyzing non-recursive algorithms.
- 4. What are the two principal variations of algorithm visualization?
- 5. What is divide and conquer technique?
- 6. Define Brute force algorithm.
- 7. List the important properties of heaps.
- 8. What is a Huffman code and tree?
- 9. State subset sum problem.
- 10. Define state space tree.

PART - B (5 x
$$16 = 80 \text{ Marks}$$
)

11. (a) Write an algorithm for sequential search and derive its worst – case, best – case and average – case efficiencies. (16)

	(b)	Explain all asymptotic notations used in algorithm analysis. (16	<u>(</u>
12.	(a)	What is the mathematical analysis of recursive algorithms? Explain about the towe of Hanoi problem. (16	
		Or	
	(b)	Write a non-recursive algorithm to find whether the elements in a array are unique. Also analyze its efficiency. (16)	
13.	(a)	What are the differences between DFS and BFS? Solve topological sorting problemusing DFS algorithm with an example. (16	
		Or	
	(b)	What is brute-force method? Explain selection sort algorithm with an example Analyse its efficiency. (16	
14.	(a)	Explain any five swing components that can be used in layout with suitable example program. (16	
		Or	
	(b)	Explain the Prim's algorithm and Kruskal's algorithm with suitable example to obtain minimum spanning tree. (16	
15.	(a)	Explain backtracking concept and apply same to n-Queen's problem. (16)
		Or	
	(b)	How is dynamic programming applied to solve the traveling salesman problem. Explain in detail with an example. (16)	