Reg. No. :

Question Paper Code: 44004

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Fourth Semester

Electronics and Communication Engineering

14UMA424 - PROBABILITY AND RANDOM PROCESSES

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(Smith chart may be permitted)

PART A - (10 x 1 = 10 Marks)

1.	The mean value of	Poisson distribution is		
	(a) θ	(b) 1	(c) 0	(d) λ

2. If X is a Random Variable, where Var(x) = 4, then predict the Var (3X+8)(a) 36 (b) 0 (c) 26 (d) 44

3. When will the two Regression Lines be coincide

(a) r=0	(b) r=1	(c) $r=\pm 1$	(d) $r = \infty$	
4. If $X = Y$ then correlation	on coefficient between	them is		
(a) <i>0</i>	(b) ∞	(c) <i>1</i>	(d) ±1	
5. A Non-Null Persisten	t and Aperiodic state is	s called		
(a) Return state	(b) Irreducible	(c) Ergodic	(d) Recurrent	
6. Every Strongly station	nary process of order 2	e is a		
(a) Orthogonal	process	(b) Station	nory Drogoog	

(a) Orthogonal process(b) Stationary Process(c) WSS Process(d) None of these

7. The power spectral density of X(t) is defined by

(a)
$$y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$$

(b) $X(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$
(c) $s_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau)e^{i\omega\tau}d\tau$
(d) $s_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau)e^{-i\omega\tau}d\tau$

8. $R_{XX}(\tau)$ is an _____ function of τ (a) Positive (b) 1

- 9. White noise is also called as
 - (a) System(b) White Gaussian noise(c) Functional white noise(d) Stationary

10. A ______ is a functional relationship between the input X(t) and the output Y(t)(a) system(b) process(c) functional(d) stationary

PART - B (5 x 2 = 10 Marks)

- 11. State Axioms of Probability.
- 12. Define covariance.
- 13. Define random telegraph signal process.
- 14. State Winear-Khinchine theorem.
- 15. If X(t) is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$, then formulate $R_{XY}(\tau) = R_{XY}(\tau) * h(\tau)$.

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) Deduce the moment generating function of exponential distribution and hence find its mean and variance. (8)
 - (ii) The marks obtained by a number of students in a certain subject are approximately normally distributed with mean 65 and standard deviation 5. If 3 students are taken at random from this set, interpret the probability that at least one of them would have scored above 75? (Given the area between z=0 and z=2 under the standard normal curve is 0.4772). (8)

2

(b) A random variable X has the following probability function

Value of x	0	1	2	3	4
P(x)	k	3 <i>k</i>	5 <i>k</i>	7 <i>k</i>	9k

Find the value of k, P(x < 3) and distribution function of x.

17. (a) The joint probability distribution of *X* and *Y* is given below:

YX	-1	1
0	1/8	3/8
1	2/8	2/8

Find the correlation coefficient between X and Y.

Or

(b) (i) If the joint probability density function of a two dimensional random variable

(X,Y) is given by $f(x, y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$. Find out (i) P(X > 1), (ii) P(Y<¹/₂). (8)

(ii) Analyse the correlation coefficient between the heights (in inches) of fathers X and their sons Y from the following data.(8)

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

18. (a) Generalize the postulates of a Poisson process and derive the probability distribution for the Poisson Process. Also Show that the sum of two independent Poisson process is again a Poisson process. (16)

Or

(b) (i) Explain the classification of random process. (8)

(16)

(16)

- (ii) The transition probability of a Markov chain {X}, $n = 1, 2, 3, \dots$, having 3 states 1, 2 and 3 $P = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$ and the initial distribution is $p^{(0)} = (0.7, 0.2, 0.1).$ Find (1) $P\{X_2 = 3\}$ and (2) $P = \{X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2\}.$ (8)
- 19. (a) (i) State and Prove Wiener-Khinchine theorem.
 - (ii) Given that the autocorrelation function of a stationary random process is $R_{xx}(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}.$ Predict the mean and variance of the process {X(t)}. (8)

Or

- (b) (i) Define cross-correlation function and write the properties of cross-correlation function.
 (ii) State and Prove Wiener-Khinchine theorem.
 (8)
- 20. (a) (i) The input to a time- invariant, stable linear system is a WSS process, Enumerate that the output will also be a WSS process. (8)
 - (ii) If X(t) is a band limited process such that $S_{xx}(\omega) = 0$, $|\omega| > \sigma$, then formulate $2[R_{xx}(0) - R_{xx}(\tau)] \le \sigma^2 \tau^2 R_{xx}(0).$ (8)

Or

- (b) (i) Show that S_{yy}(ω) = S_{xx}(ω)|H(ω)|² where Sxx(ω) and Syy(ω) are the power spectral density functions of the input X(t), output Y(t) and H(ω) is the system transfer function.
 (8)
 - (ii) If the input to a time- invariant, stable linear system is a WSS process,Enumerate that the output will also be a WSS process.

(8)