Reg. No. :											
------------	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 55024

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Fifth Semester

Computer Science and Engineering

15UCS504 - THEORY OF COMPUTATION

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. Given an arbitrary non-deterministic finite automaton (NFA) with N states, the maximum number of states in an equivalent DFA.

(a) N^2	(b) 2^N	(c) 2N	(d) N!

- 2. Let $L = \{0^n | n \text{ is a perfect square}\}$. Then language L is
 - (a) Context free (b) Regular (c) Not Regular (d) Recursive
- The language generated by the grammar S -> aSa|bSb|a|b over the alphabet {a, b} is the set of
 - (a) All palindrome (b) All odd length palindromes
 - (c) All even length palindromes (d) Strings that begin and end with 'a' or 'b'
- 4. Context free languages are not closed under which of the following operation.

(a) Union	(b) Intersection
(c) Concatenation	(d) Closure

5. If L and L' are recursively enumerable, then L is

(a) Context free	(b) Regular
(c) Context sensitive	(d) Recursive

PART - B (5 x 3 = 15 Marks)

- 6. Design a DFA to accept the language L = { w | w has both an even number of 0's and even number of 1's}?
- 7. State the pumping lemma for regular language.
- 8. For the grammar S->aCa, C->aCa/b. Find L(G).
- 9. Define the acceptance of PDA by empty stack. Is it true that the language accepted by a PDA by empty stack is equivalent to the language accepted by a PDA by final state.
- 10. State the closure properties of recursive and recursively enumerable languages.

PART - C (5 x
$$16 = 80$$
 Marks)

- 11. (a) (i) Compare DFA and NFA with examples.
 - (ii) Construct DFA equivalent to the NFA given below (10)

	0	1
р	{p,q}	{p}
q	{r}	{r}
r	{S}	ф
*s	{S}	{S}

Or

- (b) (i) Construct the deterministic finite automata to accept string of 0's and 1's ending with the string 011. (8)
 - (ii) Prove that a language accepted by some NFA if and only if L is accepted by DFA.
- 12. (a) Construct a minimized DFA for the regular expression $(a|b)^*abb$. (16)

Or

- (b) (i) Prove that the language $L=\{0^n1^n | n \ge 1\}$ is not regular. (8)
 - (ii) Explain any three closure properties of Regular languages. (8)
- 13. (a) (i) Let G be a grammar S->0B|1A, A->0|0S|1AA, B->1|1S|0BB. For the string 00110101 find its leftmost derivation and derivation tree. (8)

55024

(6)

(ii) Prove that the following grammar is ambiguous. S -> aS | aSbS | ϵ . (8)

Or

- (b) Define Chomsky Normal Form (CNF).Covert the following grammar to CNF.
 S -> AB | aB
 B -> aab | ε
 B-> bbA
 (16)
- 14. (a) (i) Construct a PDA accepting by empty stack for the language $L=\{a^{m} b^{m} c^{n} | m, n \ge 1\}.$ (8)
 - (ii) If P be a PDA. Then there is a context free grammar G such that L(G)=L(P). (8)

Or

- (b) (i) Find the PDA equivalent to the given CFG with the following productions $S \rightarrow aB \mid bA, A \rightarrow a \mid aS \mid bAA, B \rightarrow b \mid bS \mid aBB.$ (8)
 - (ii) State and prove the pumping lemma for context free language. (8)
- 15. (a) (i) Explain the programming techniques for Turing machine. (8)
 - (ii) Prove the following theorem 'If both a language L and its complement are RE, then L is recursive'.

Or

(b) State and prove post's correspondence problem. (16)