Question Paper Code: 33001

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL Branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. State the Dirichlet's conditions for the existence of a Fourier series.
- 2. State the conditions for f(x) to have Fourier series expansion.
- 3. Find Fourier Sine Transform of $\frac{1}{x}$.
- 4. Define Fourier Integral theorem.
- 5. Find the Z-transform of a^n .
- 6. Find $Z[\frac{1}{n(n+1)}]$.
- 7. State initial and final value theorems on z transform.
- 8. State any two laws which are assumed to derive one dimensional heat equation.
- 9. Write down the diagonal five point formula in Laplace equation.
- 10. State Liebmann's iteration process formula.

PART - B (
$$5 \times 16 = 80$$
 Marks)

11. (a) Expand the function $f(x) = \sin x$, $0 < x < \pi$ in a Fourier cosine series. (16)

(b) Find the Half range cosine series for y = x in (0, 1) and hence show that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty . \qquad (16)$

Or

12. (a) Find the Fourier cosine and sine transform of $e^{-\alpha x}$, a > 0 and hence evaluate

$$\int_{0}^{\infty} \frac{dx}{\left(a^{2} + x^{2}\right)^{2}} \text{ and } \int_{0}^{\infty} \frac{x^{2}}{\left(a^{2} + x^{2}\right)^{2}} dx$$
(16)

Or

(b) (i) Find the Fourier transform of $e^{-a|x|}$ if a > 0 (8)

(ii) Evaluate using transform method
$$\int_0^\infty \frac{dx}{(x^2+1)(x^2+4)}$$
 (8)

13. (a) Find the inverse z - transform of
$$\frac{z^2}{(z-a)(z-b)}$$
 using convolution theorem. (16)

Or

- (b) (i) State and prove initial and final value theorem on Z- transform. (8) (ii) Find $Z^{-1}\left[\frac{z(z^2-z+2)}{(z+1)(z-1)^2}\right]$ by using method of Partial fraction. (8)
- 14. (a) A rod of length *l* has its ends *A* and *B* maintained at 0° C and 100° C respectively, until steady state conditions prevail. If *B* is suddenly reduced to 0° C and maintained at 0° C, find the temperature at a distance *x* from *A* at time *t*. (16)

Or

- (b) A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = 3(lx x^2)$ from which it is released at time t = 0. Find the displacement of any point on the string at a distance of x from one end at any time t. (16)
- 15. (a) Solve $u_{xx} = 32u_t$ for $t \ge 0$, $0 \le x \le 1$, u(0, t) = 0, u(x, 0) = 0 and u(1, t) = t for two time step. (16)

Or

(b) Solve numerically $4u_{xx} = u_{u}$ with the boundary conditions u(0,t) = 0, u(4,t) = 0 and the initial conditions $u_{t}(x,0) = 0$ and u(x,0) = x (4-x) taking h = 1 up to 4 time steps.

(16)